Publications by authors named "Paul Lemarre"

Quantitative predictive modeling of cancer growth, progression, and individual response to therapy is a rapidly growing field. Researchers from mathematical modeling, systems biology, pharmaceutical industry, and regulatory bodies, are collaboratively working on predictive models that could be applied for drug development and, ultimately, the clinical management of cancer patients. A plethora of modeling paradigms and approaches have emerged, making it challenging to compile a comprehensive review across all subdisciplines.

View Article and Find Full Text PDF

The misconformation and aggregation of the protein Amyloid-Beta (A[Formula: see text]) is a key event in the propagation of Alzheimer's Disease (AD). Different types of assemblies are identified, with long fibrils and plaques deposing during the late stages of AD. In the earlier stages, the disease spread is driven by the formation and the spatial propagation of small amorphous assemblies called oligomers.

View Article and Find Full Text PDF

The use of yeast systems to study the propagation of prions and amyloids has emerged as a crucial aspect of the global endeavor to understand those mechanisms. Yeast prion systems are intrinsically multi-scale: the molecular chemical processes are indeed coupled to the cellular processes of cell growth and division to influence phenotypical traits, observable at the scale of colonies. We introduce a novel modeling framework to tackle this difficulty using impulsive differential equations.

View Article and Find Full Text PDF

Prions are proteins capable of adopting misfolded conformations and transmitting these conformations to other normally folded proteins. Prions are most commonly known for causing fatal neurodegenerative diseases in mammals but are also associated with several harmless phenotypes in yeast. A distinct feature of prion propagation is the existence of different phenotypical variants, called strains.

View Article and Find Full Text PDF