Publications by authors named "Paul Lefebvre"

Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia.

View Article and Find Full Text PDF

Oxygen is known to prevent hydrogen production in Chlamydomonas, both by inhibiting the hydrogenase enzyme and by preventing the accumulation of HYDA-encoding transcripts. We developed a screen for mutants showing constitutive accumulation of transcripts in the presence of oxygen. A reporter gene required for ciliary motility, placed under the control of the promoter, conferred motility only in hypoxic conditions.

View Article and Find Full Text PDF

Photosynthetic organisms provide food and energy for nearly all life on Earth, yet half of their protein-coding genes remain uncharacterized. Characterization of these genes could be greatly accelerated by new genetic resources for unicellular organisms. Here we generated a genome-wide, indexed library of mapped insertion mutants for the unicellular alga Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

Agricultural intensification offers potential to grow more food while reducing the conversion of native ecosystems to croplands. However, intensification also risks environmental degradation through emissions of the greenhouse gas nitrous oxide (NO) and nitrate leaching to ground and surface waters. Intensively-managed croplands and nitrogen (N) fertilizer use are expanding rapidly in tropical regions.

View Article and Find Full Text PDF

The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences.

View Article and Find Full Text PDF

We performed whole-genome resequencing of 12 field isolates and eight commonly studied laboratory strains of the model organism Chlamydomonas reinhardtii to characterize genomic diversity and provide a resource for studies of natural variation. Our data support previous observations that Chlamydomonas is among the most diverse eukaryotic species. Nucleotide diversity is ∼3% and is geographically structured in North America with some evidence of admixture among sampling locales.

View Article and Find Full Text PDF

A new strain of yellow-green algae (Xanthophyceae, Heterokonta), tentatively named Heterococcus sp. DN1 (UTEX accession number UTEX ZZ885), was discovered among snow fields in the Rocky Mountains. Axenic cultures of H.

View Article and Find Full Text PDF

Fertilization is a crucial yet poorly characterized event in eukaryotes. Our previous discovery that the broadly conserved protein HAP2 (GCS1) functioned in gamete membrane fusion in the unicellular green alga Chlamydomonas and the malaria pathogen Plasmodium led us to exploit the rare biological phenomenon of isogamy in Chlamydomonas in a comparative transcriptomics strategy to uncover additional conserved sexual reproduction genes. All previously identified Chlamydomonas fertilization-essential genes fell into related clusters based on their expression patterns.

View Article and Find Full Text PDF

The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest.

View Article and Find Full Text PDF

The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes-LF1, LF2, LF3, and LF4-cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases.

View Article and Find Full Text PDF

The use of microalgae for biofuel production will be beneficial to society if we can produce biofuels at large scales with minimal mechanical energy input in the production process. Understanding micro-algal physiological responses under variable environmental conditions in bioreactors is essential for the optimization of biofuel production. We demonstrate that measuring micro-algal swimming speed provides information on culture health and total fatty acid accumulation.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in the APM1 and APM2 genes of the green alga Chlamydomonas reinhardtii provide resistance to specific herbicides through alterations in protein function and expression.
  • Genetic analysis reveals interactions between APM1 and APM2 gene products, suggesting they work together within the Hsp70-Hsp40 chaperone complex, which affects microtubule stability.
  • The unique genetic make-up of Chlamydomonas allows for a clear examination of the roles played by the Hsp70 chaperone system in cellular dynamics and herbicide resistance.
View Article and Find Full Text PDF

Preparative HPLC-MS is often the method of choice for purification of small amounts (<100mg) of diverse new molecules, such as compound libraries for drug discovery. The method is robust, well proven, and widely applicable. In contrast, preparative supercritical fluid chromatography coupled with mass spectrometry (SFC-MS) has seen only slow acceptance for the same application--despite some potential scientific and economic advantages.

View Article and Find Full Text PDF

Preparative HPLC and HPLC-MS are well established as the methods of choice for purification of pharmaceutical library compounds. Recent advances in supercritical fluid chromatography (SFC) have now made SFC a viable alternative to HPLC for this application. One of the potential arguments for using SFC in place of, or in addition to, HPLC is that it may offer different selectivity and thus has the potential for improved separation success rates.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to understand the swimming behavior of Dunaliella primolecta in controlled fluid flow settings in the lab.
  • It used advanced techniques like particle image and tracking velocimetry to measure the algae's movement under different fluid velocities and energy levels common in natural water environments.
  • The findings showed that D. primolecta swam at an average speed of 41 microm/s in still water, but flow increased velocity variability and significantly reduced algae accumulation in fast-moving fluids.
View Article and Find Full Text PDF

Positive signaling by nitrate in its assimilation pathway has been studied in Chlamydomonas reinhardtii. Among >34,000 lines generated by plasmid insertion, 10 mutants were unable to activate nitrate reductase (NIA1) gene expression and had a Nit(-) (no growth in nitrate) phenotype. Each of these 10 lines was mutated in the nitrate assimilation-specific regulatory gene NIT2.

View Article and Find Full Text PDF

Mutations in the UNI2 locus in Chlamydomonas reinhardtii result in a "uniflagellar" phenotype in which flagellar assembly occurs preferentially from the older basal body and ultrastructural defects reside in the transition zones. The UNI2 gene encodes a protein of 134 kDa that shares 20.5% homology with a human protein.

View Article and Find Full Text PDF

Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella.

View Article and Find Full Text PDF
Article Synopsis
  • Little is known about how organelle size is regulated in cells, but the study identifies a new cyclin-dependent kinase (CDK) called LF2, essential for controlling flagellar length in Chlamydomonas reinhardtii.
  • The LF2 protein lacks a typical cyclin-binding motif but retains crucial kinase activity residues, and mutations in the LF2 gene affect flagellar length and assembly.
  • LF2p interacts with other flagellar proteins (LF1p and LF3p), suggesting it plays a key role in a regulatory kinase complex that governs the assembly and length of flagella.
View Article and Find Full Text PDF

Expansion of the cattle and soy industries in the Amazon basin has increased deforestation rates and will soon push all-weather highways into the region's core. In the face of this growing pressure, a comprehensive conservation strategy for the Amazon basin should protect its watersheds, the full range of species and ecosystem diversity, and the stability of regional climates. Here we report that protected areas in the Amazon basin--the central feature of prevailing conservation approaches--are an important but insufficient component of this strategy, based on policy-sensitive simulations of future deforestation.

View Article and Find Full Text PDF
Article Synopsis
  • Chlamydomonas reinhardtii, a biflagellate alga, has tightly regulated flagellar length, influenced by the LF1 gene, which is essential for normal flagella assembly.
  • A mutation in the LF1 gene leads to the production of extra-long flagella and slow regeneration after amputation due to a specific genetic change that creates a premature stop signal.
  • Molecular analysis via BAC libraries revealed that the LF1 protein, necessary for regulating flagellar length, primarily accumulates in the cell body rather than in the flagella, indicating that only a portion of the LF1 protein is needed for its function.
View Article and Find Full Text PDF

Chlamydomonas reinhardtii controls flagellar assembly such that flagella are of an equal and predetermined length. Previous studies demonstrated that lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), induced flagellar elongation, suggesting that a lithium-sensitive signal transduction pathway regulated flagellar length (S. Nakamura, H.

View Article and Find Full Text PDF

Numerous studies have indicated that the central apparatus plays a significant role in regulating flagellar motility, yet little is known about how the central pair of microtubules or their associated projections assemble. Several Chlamydomonas mutants are defective in central apparatus assembly. For example, mutant pf15 cells have paralyzed flagella that completely lack the central pair of microtubules.

View Article and Find Full Text PDF

How centrioles and basal bodies assemble is a long-standing puzzle in cell biology. To address this problem, we analyzed a novel basal body-defective Chlamydomonas reinhardtii mutant isolated from a collection of flagella-less mutants. This mutant, bld10, displayed disorganized mitotic spindles and cytoplasmic microtubules, resulting in abnormal cell division and slow growth.

View Article and Find Full Text PDF