Measurement of the time-of-flight (TOF) difference of each coincident pair of photons increases the effective sensitivity of positron emission tomography (PET). Many authors have analyzed the benefit of TOF for quantification and hot spot detection in the reconstructed activity images. However, TOF not only improves the effective sensitivity, it also enables the joint reconstruction of the tracer concentration and attenuation images.
View Article and Find Full Text PDFIt is well known that measurement of the time-of-flight (TOF) increases the information provided by coincident events in positron emission tomography (PET). This information increase propagates through the reconstruction and improves the signal-to-noise ratio in the reconstructed images. Takehiro Tomitani has analytically computed the gain in variance in the reconstructed image, provided by a particular TOF resolution, for the center of a uniform disk and for a Gaussian TOF kernel.
View Article and Find Full Text PDFThe challenge to reach 10 ps coincidence time resolution (CTR) in time-of-flight positron emission tomography (TOF-PET) is triggering major efforts worldwide, but timing improvements of scintillation detectors will remain elusive without depth-of-interaction (DOI) correction in long crystals. Nonetheless, this momentum opportunely brings up the prospect of a fully time-based DOI estimation since fast timing signals intrinsically carry DOI information, even with a traditional single-ended readout. Consequently, extracting features of the detected signal time distribution could uncover the spatial origin of the interaction and in return, provide enhancement on the timing precision of detectors.
View Article and Find Full Text PDFSince the seventies, positron emission tomography (PET) has become an invaluable medical molecular imaging modality with an unprecedented sensitivity at the picomolar level, especially for cancer diagnosis and the monitoring of its response to therapy. More recently, its combination with x-ray computed tomography (CT) or magnetic resonance (MR) has added high precision anatomic information in fused PET/CT and PET/MR images, thus compensating for the modest intrinsic spatial resolution of PET. Nevertheless, a number of medical challenges call for further improvements in PET sensitivity.
View Article and Find Full Text PDFBismuth germanate (BGO) shows good properties for positron emission tomography (PET) applications, but was substituted by the development of faster crystals like lutetium oxyorthosilicate (LSO) for time-of-flight PET (TOF-PET). Recent improvements in silicon photomultipliers (SiPMs) and fast readout electronics make it possible to access the Cherenkov photon signal produced upon 511 keV interaction, which makes BGO a cost-effective candidate for TOF-PET. Tails in the time-delay distribution, however, remain a challenge.
View Article and Find Full Text PDFSolid state photodetectors like silicon photomultipliers (SiPMs) are playing an important role in several fields of medical imaging, life sciences and high energy physics. They are able to sense optical photons with a single photon detection time precision below 100 ps, making them ideal candidates to read the photons generated by fast scintillators in time of flight positron emission tomography (TOF-PET). By implementing novel high-frequency readout electronics, it is possible to perform a completely new evaluation of the best timing performance achievable with state-of-the-art analog-SiPMs and scintillation materials.
View Article and Find Full Text PDFHeat treatment is needed to increase the luminescence intensity of ZnO:Ga particles, but it comes at the cost of higher particle agglomeration. Higher agglomeration results in low transparency of scintillating powder when embedded in a matrix and constitutes one of the biggest disadvantages, besides low light yield and low stopping power, of ZnO:Ga powder. Limiting ZnO:Ga particle size is therefore a key step in order to prepare highly luminescent and transparent composites with prospects for optical applications.
View Article and Find Full Text PDFScintillator based radiation detectors readout by SiPMs successively break records in their reached time resolution. Nevertheless, new challenges in time of flight positron emission tomography (TOF-PET) and high energy physics are setting unmatched goals in the 10 ps range. Recently it was shown that high frequency (HF) readout of SiPMs significantly improves the measured single photon time resolution (SPTR), allowing to evaluate the intrinsic performance of large area devices; e.
View Article and Find Full Text PDFA key step to improve the coincidence time resolution of positron emission tomography detectors that exploit small populations of promptly emitted photons is improving the single photon time resolution (SPTR) of silicon photomultipliers (SiPMs). The influence of electronic noise has previously been identified as the dominant factor affecting SPTR for large area, analog SiPMs. In this work, we measure the achievable SPTR with front end electronic readout that minimizes the influence of electronic noise.
View Article and Find Full Text PDFHighly luminescent ZnO:Ga-polystyrene composite (ZnO:Ga-PS) with ultrafast subnanosecond decay was prepared by homogeneous embedding the ZnO:Ga scintillating powder into the scintillating organic matrix. The powder was prepared by photo-induced precipitation with subsequent calcination in air and Ar/H atmospheres. The composite was subsequently prepared by mixing the ZnO:Ga powder into the polystyrene (10 wt% fraction of ZnO:Ga) and press compacted to the 1 mm thick pellet.
View Article and Find Full Text PDFThe coincidence time resolution (CTR) of scintillator based detectors commonly used in positron emission tomography is well known to be dependent on the scintillation decay time (τd) and the number of photons detected (n'), i.e. CTR proportional variant √τd/n'.
View Article and Find Full Text PDFWe propose, analyze and optimize a two-dimensional conical photonic crystal geometry to enhance light extraction from a high refractive index material, such as an inorganic scintillator. The conical geometry suppresses Fresnel reflections at an optical interface due to adiabatic impedance matching from a gradient index effect. The periodic array of cone structures with a pitch larger than the wavelength of light diffracts light into higher-order modes with different propagating angles, enabling certain photons to overcome total internal reflection (TIR).
View Article and Find Full Text PDFThe coincidence time resolution (CTR) becomes a key parameter of 511 keV gamma detection in time of flight positron emission tomography (TOF-PET). This is because additional information obtained through timing leads to a better noise suppression and therefore a better signal to noise ratio in the reconstructed image. In this paper we present the results of CTR measurements on two different SiPM technologies from FBK coupled to LSO:Ce codoped 0.
View Article and Find Full Text PDFThe uncertainty in time of particle detection within a scintillator detector, characterised by the coincidence time resolution (CTR), is explored with respect to the interaction position within the scintillator crystal itself. Electronic collimation between two scintillator detectors is utilised to determine the CTR with depth of interaction (DOI) for different materials, geometries and wrappings. Significantly, no relationship between the CTR and DOI is observed within experimental error.
View Article and Find Full Text PDF