Proc Natl Acad Sci U S A
July 2024
Glutamyl-prolyl-tRNA synthetase (EPRS1) is a bifunctional aminoacyl-tRNA-synthetase (aaRS) essential for decoding the genetic code. EPRS1 resides, with seven other aaRSs and three noncatalytic proteins, in the cytoplasmic multi-tRNA synthetase complex (MSC). Multiple MSC-resident aaRSs, including EPRS1, exhibit stimulus-dependent release from the MSC to perform noncanonical activities distinct from their primary function in protein synthesis.
View Article and Find Full Text PDFBackground: Platinum resistance is the primary cause of poor survival in ovarian cancer (OC) patients. Targeted therapies and biomarkers of chemoresistance are critical for the treatment of OC patients. Our previous studies identified cell surface CD55, a member of the complement regulatory proteins, drives chemoresistance and maintenance of cancer stem cells (CSCs).
View Article and Find Full Text PDFHypomyelinating leukodystrophy (HLD) is an autosomal recessive disorder characterized by defective central nervous system myelination. Exome sequencing of two siblings with severe cognitive and motor impairment and progressive hypomyelination characteristic of HLD revealed homozygosity for a missense single-nucleotide variant (SNV) in EPRS1 (c.4444 C > A; p.
View Article and Find Full Text PDFViruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA termini, i.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) displays alterations in iron that drive proliferation and tumor growth. Iron regulation is complex and involves many regulatory mechanisms, including the homeostatic iron regulator () gene, which encodes the homeostatic iron regulatory protein. While is upregulated in GBM and correlates with poor survival outcomes, the function of HFE in GBM remains unclear.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that serve a foundational role in the efficient and accurate translation of genetic information from messenger RNA to proteins. These proteins play critical, non-canonical functions in a multitude of cellular processes. Multiple viruses are known to hijack the functions of aaRSs for proviral outcomes, while cells modify antiviral responses through non-canonical functions of certain synthetases.
View Article and Find Full Text PDFAdiponectin, an adipocyte-specific secretory protein encoded by the gene has a causal role in insulin resistance. Anti-diabetic drugs increase plasma adiponectin by a poorly understood, post-transcriptional mechanism enhancing insulin sensitivity. Deletion analysis of a reporter bearing the mouse mRNA 5'-leader identified an inhibitory -regulatory sequence.
View Article and Find Full Text PDFComplexes of two or more proteins form many, if not most, of the intracellular "machines" that execute physical and chemical work, and transmit information. Complexes can form from stochastic post-translational interactions of fully formed proteins, but recent attention has shifted to co-translational interactions in which the most common mechanism involves binding of a mature constituent to an incomplete polypeptide emerging from a translating ribosome. Studies in yeast have revealed co-translational interactions during formation of multiple major complexes, and together with recent mammalian cell studies, suggest widespread utilization of the mechanism.
View Article and Find Full Text PDFThe AKT signaling pathway plays critical roles in the resolution of inflammation. However, the underlying mechanisms of anti-inflammatory regulation and signal coordination remain unclear. Here, we report that anti-inflammatory AKT signaling is coordinated by glutamyl-prolyl-tRNA synthetase 1 (EPRS1).
View Article and Find Full Text PDFNAR Genom Bioinform
December 2022
Transcriptional and post-transcriptional mechanisms diversify the proteome beyond gene number, while maintaining a sequence relationship between original and altered proteins. A new mechanism breaks this paradigm, generating novel proteins by translating alternative open reading frames (Alt-ORFs) within canonical host mRNAs. Uniquely, 'alt-proteins' lack sequence homology with host ORF-derived proteins.
View Article and Find Full Text PDFAmino acid ligation to cognate transfer RNAs (tRNAs) is catalyzed by aminoacyl-tRNA synthetases (aaRSs)-essential interpreters of the genetic code during translation. Mammalian cells harbor 20 cytoplasmic aaRSs, out of which 9 (in 8 proteins), with 3 non-aaRS proteins, AIMPs 1 to 3, form the ∼1.25-MDa multi-tRNA synthetase complex (MSC).
View Article and Find Full Text PDFIncreasing evidence suggests that intratumoral inflammation has an outsized influence on antitumor immunity. Here, we report that IL-17, a proinflammatory cytokine widely associated with poor prognosis in solid tumors, drives the therapeutic failure of anti-PD-L1. By timing the deletion of IL-17 signaling specifically in cancer-associated fibroblasts (CAFs) in late-stage tumors, we show that IL-17 signaling drives immune exclusion by activating a collagen deposition program in murine models of cutaneous squamous cell carcinoma (cSCC).
View Article and Find Full Text PDFDespite recent advances in structural determination of individual proteins, elucidating the 3-dimensional architecture of large, multiprotein complexes remains challenging, partly because of issues related to structural integrity during purification. Here, we describe a protocol to determine the 3-dimensional architecture of the 11-constituent, multi-tRNA synthetase complex (MSC) using chemical cross-linking coupled with mass-spectrometry (XL-MS). The protocol does not require purification and is broadly applicable, facilitating determination of native structures in cell lysates and in non-disrupted cells as well as in purified complexes.
View Article and Find Full Text PDFIn mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC.
View Article and Find Full Text PDFMultiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.
View Article and Find Full Text PDFCRISPR-Cas9-mediated, site-directed mutagenesis in mice generates mosaic founder mice with varied efficiency of desired point mutation and other non-homologous end-joined variants. Here, we present a protocol for design, sample preparation, and analysis for identification of mice with the desired mutation. Deep sequencing provides the proportion of reads of a particular allele for each mouse line.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases (AARS) participate in decoding the genome by catalyzing conjugation of amino acids to their cognate tRNAs. During evolution, biochemical and environmental conditions markedly influenced the sequence and structure of the 20 AARSs, revealing adaptations dictating canonical and orthogonal activities. Here, we investigate the function of the appended Zn-binding domain (ZBD) in the bifunctional AARS, glutamyl-prolyl-tRNA synthetase (GluProRS).
View Article and Find Full Text PDFEzrin links the cytoskeleton to cell surface integrins and plasma membrane receptors, contributing to the proliferative and metastatic potential of cancer cells. Elevated ezrin expression in several cancers is associated with poor outcomes. Tumor cell ezrin expression and function have been investigated in depth; however, its role in macrophages and other tumor microenvironment cells remains unexplored.
View Article and Find Full Text PDFChronic inflammation is a common feature of obesity, with elevated cytokines such as interleukin-1 (IL-1) in the circulation and tissues. Here, we report an unconventional IL-1R-MyD88-IRAK2-PHB/OPA1 signaling axis that reprograms mitochondrial metabolism in adipocytes to exacerbate obesity. IL-1 induced recruitment of IRAK2 Myddosome to mitochondria outer membranes via recognition by TOM20, followed by TIMM50-guided translocation of IRAK2 into mitochondria inner membranes, to suppress oxidative phosphorylation and fatty acid oxidation, thereby attenuating energy expenditure.
View Article and Find Full Text PDFIn mammalian cells, eight cytoplasmic aminoacyl-tRNA synthetases (AARS), and three non-synthetase proteins, reside in a large multi-tRNA synthetase complex (MSC). AARSs have critical roles in interpretation of the genetic code during protein synthesis, and in non-canonical functions unrelated to translation. Nonetheless, the structure and function of the MSC remain unclear.
View Article and Find Full Text PDFHuman (HCMV) is a ubiquitous pathogen that has coevolved with its host and, in doing so, is highly efficient in undermining antiviral responses that limit successful infections. As a result, HCMV infections are highly problematic in individuals with weakened or underdeveloped immune systems, including transplant recipients and newborns. Understanding how HCMV controls the microenvironment of an infected cell so as to favor productive replication is of critical importance.
View Article and Find Full Text PDFCopper levels are known to be elevated in inflamed and malignant tissues. But the mechanism underlying this selective enrichment has been elusive. In this study, we report a axis by which inflammatory cytokines, such as IL-17, drive cellular copper uptake via the induction of a metalloreductase, STEAP4.
View Article and Find Full Text PDFIntestinal fibrosis leading to strictures remains a significant clinical problem in inflammatory bowel diseases (IBD). The role of bacterial components in activating intestinal mesenchymal cells and driving fibrogenesis is largely unexplored. Tamoxifen-inducible α-SMA promoter Cre mice crossed with floxed MyD88 mice were subjected to chronic dextran sodium sulfate colitis.
View Article and Find Full Text PDF