Publications by authors named "Paul L Colbert"

The chemokine CXCL14 is a highly conserved, homeostatic chemokine that is constitutively expressed in skin epithelia. Responsible for immune cell recruitment and maturation, as well as impacting epithelial cell motility, CXCL14 contributes to the establishment of immune surveillance within normal epithelial layers. Furthermore, CXCL14 is critical to upregulating major histocompatibility complex class I expression on tumor cells.

View Article and Find Full Text PDF
Article Synopsis
  • * The researchers believe that tumors can develop nerves through a process called axonogenesis, and they tested this with PC12 cells, human tumor samples, and cancer models in mice.
  • * They found that tumors release exosomes that promote nerve growth, and when exosome release is blocked, tumor innervation decreases, indicating that exosomes containing a molecule called EphrinB1 enhance nerve development in tumors.
View Article and Find Full Text PDF

The incidence of human papillomavirus-associated head and neck squamous cell carcinoma (HPV[ + ] HNSCC) is rapidly increasing. Although clinical management of primary HPV( + ) HNSCC is relatively successful, disease progression, including recurrence and metastasis, is often fatal. Moreover, patients with progressive disease face limited treatment options and significant treatment-associated morbidity.

View Article and Find Full Text PDF

Microtubules (MTs) are components of the cytoskeleton made up of polymerized alpha and beta tubulin dimers. MT structure and function must be maintained throughout the cell cycle to ensure proper execution of mitosis and cellular homeostasis. The protein tyrosine phosphatase, PTPN13, localizes to distinct compartments during mitosis and cytokinesis.

View Article and Find Full Text PDF

Most squamous cell carcinomas of the head and neck (HNSCC) overexpress ERBB1/EGFR, but EGF receptor (EGFR)-targeted therapies have yielded disappointing clinical results in treatment of this cancer. Here, we describe a novel interaction between EGFR and the ligand EphrinB1 (EFNB1), and we show that EFNB1 phosphorylation and downstream signaling persists in the presence of cetuximab. Mechanistically, cetuximab drives a shift in EGFR dimerization partners within the signaling complex, suggesting that targeted drugs may trigger partner rearrangements that allow persistent pathway activation.

View Article and Find Full Text PDF