Global salinization of freshwaters is adversely affecting biotic communities and ecosystem processes. We reviewed six decades (1960-2020) of literature published on animal responses to increased salinities across different taxonomic and ecological contexts and identified knowledge gaps. From 585 journal articles, we characterized 5924 responses of mollusks, crustaceans, zooplankton, non-arthropod invertebrates (NAI), insects, fishes, and amphibians to salinization.
View Article and Find Full Text PDFHuman impact, particularly land cover changes (e.g., agriculture, construction) increase erosion and sediment loading into streams.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2019
Sediment is the most commonly identified pollutant associated with macroinvertebrate community impairments in freshwater streams nationwide. Management of this physical stressor is complicated by the multiple measures of sediment available (e.g.
View Article and Find Full Text PDFRiverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood.
View Article and Find Full Text PDFStreams collect runoff, heat, and sediment from their watersheds, making them highly vulnerable to anthropogenic disturbances such as urbanization and climate change. Forecasting the effects of these disturbances using process-based models is critical to identifying the form and magnitude of likely impacts. Here, we integrate a new biotic model with four previously developed physical models (downscaled climate projections, stream hydrology, geomorphology, and water temperature) to predict how stream fish growth and reproduction will most probably respond to shifts in climate and urbanization over the next several decades.
View Article and Find Full Text PDFDespite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to "restore" pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.
View Article and Find Full Text PDFThe Roanoke logperch (Percina rex Jordan and Evermann), an endangered fish, occurs in only six watersheds in the Roanoke and Chowan river drainages of Virginia, USA. The species' population genetic structure is poorly known. We developed 16 microsatellite markers that were reliably scorable and polymorphic P.
View Article and Find Full Text PDFStream fish bioassessment methods assume that fish assemblages observed in sample sites reflect responses to local stressors, but fish assemblages are influenced by local factors as well as regional dispersal to and from connected streams. We hypothesized that fish movement to and from refugia and source populations in connected rivers (i.e.
View Article and Find Full Text PDFConservation planning aims to protect biodiversity by sustainng the natural physical, chemical, and biological processes within representative ecosystems. Often data to measure these components are inadequate or unavailable. The impact of human activities on ecosystem processes complicates integrity assessments and might alter ecosystem organization at multiple spatial scales.
View Article and Find Full Text PDFRelationships between environmental variability and movement are poorly understood, due to both their complexity and the limited ecological scope of most movement studies. We studied movements of fantail (Etheostoma flabellare), riverweed (E. podostemone), and Roanoke darters (Percina roanoka) through two stream systems during two summers.
View Article and Find Full Text PDFNestedness of faunal assemblages is a multi-scale phenomenon, potentially influenced by a variety of factors. Prior small-scale studies have found freshwater fish species assemblages to be nested along stream courses as a result of either selective colonization or extinction. However, within-stream gradients in temperature and other factors are correlated with the distributions of many fish species and may also contribute to nestedness.
View Article and Find Full Text PDFWe characterized the size structure of virtually the entire metazoan community in a fourth order, sandybottomed Piedmont stream during late summer. Our study, the first to sample across all habitat types and sizes of metazoans in an aquatic ecosystem, indicates that at the community level, stream size spectra may be bimodal for the benthos or trimodal when fish are included. Animals spanning 10 orders of magnitude in dry mass (from gastrotrichs to fish) were quantitatively collected from nine habitat types.
View Article and Find Full Text PDF