In our recently published study, we provided in vitro as well as in vivo data demonstrating the involvement of TRM2/RNC1 in homologous recombination based repair (HRR) of DNA double strand breaks (DSBs), in support of such claims reported earlier. To further validate its role in DNA DSB processing, our present study revealed that the trm2 single mutant displays higher sensitivity to persistent induction of specific DSBs at the MAT locus by HO-endonuclease with higher sterility rate among the survivors compared to wild type (wt) or exo1 single mutants. Intriguingly, both sensitivity and sterility rate increased dramatically in trm2exo1 double mutants lacking both endo-exonucleases with a progressively increased sterility rate in trm2exo1 double mutants with short-induction periods, reaching a very high level of sterility with persistent DSB inductions.
View Article and Find Full Text PDFWe previously identified an endo-exonuclease that is highly expressed in cancer cells and plays an important role in DSB repair mechanisms. A small molecular compound pentamidine, which specifically inhibited nuclease activity of the isolated endo-exonuclease from yeast as well as from mammalian cells, was capable of sensitizing tumor cells to DNA damaging agents. In this study, we investigated the effect of precisely silencing the endo-exonuclease expression by small interfering RNA (siRNA) upon treatment with a variety of DNA damaging agents in mouse B16F10 melanoma cells.
View Article and Find Full Text PDF