Mechanically exfoliated multilayer WS flakes are used as the channel of field effect transistors for low-power photodetection in the visible and near-infrared (NIR) spectral range. The electrical characterization as a function of the temperature reveals devices with n-type conduction and slightly different Schottky barriers at the drain and source contacts. The WS phototransistors can be operated in self-powered mode, yielding both a current and a voltage when exposed to light.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2023
The current study presents the electronic and magnetic properties of monolayer ZrSenanoribbons. The impact of various point defects in the form of Zr or Se vacancies, and their combinations, on the nanoribbon electronic and magnetic properties are investigated using density functional theory calculations in hydrogen-terminated zigzag and armchair ZrSenanoribbons. Although pristine ZrSeis non-magnetic, all the defective ZrSestructures exhibit ferromagnetic behavior.
View Article and Find Full Text PDFTwo-dimensional materials, including molybdenum disulfide (MoS2), present promising sensing and detecting capabilities thanks to their extreme sensitivity to changes in the environment. Their reduced thickness also facilitates the electrostatic control of the channel and opens the door to flexible electronic applications. However, these materials still exhibit integration difficulties with complementary-MOS standardized processes and methods.
View Article and Find Full Text PDFBrain-inspired, neuromorphic computing aims to address the growing computational complexity and power consumption in modern von-Neumann architectures. Progress in this area has been hindered due to the lack of hardware elements that can mimic neuronal/synaptic behavior which form the fundamental building blocks for spiking neural networks (SNNs). In this work, we leverage the short/long term memory effects due to the electron trapping events in an atomically thin channel transistor that mimic the exchange of neurotransmitters and emulate a synaptic response.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
The advent of two-dimensional materials has opened a plethora of opportunities in accessing ultrascaled device dimensions for future logic and memory applications. In this work, we demonstrate that a single layer of large-area chemical vapor deposition-grown molybdenum disulfide (MoS) sandwiched between two metal electrodes can be tuned to show multilevel nonvolatile resistive memory states with resistance values separated by 5 orders of magnitude. The switching process is unipolar and thermochemically driven requiring significant Joule heating in the reset process.
View Article and Find Full Text PDFForming gas annealing is a common process step used to improve the performance of devices based on transition-metal dichalcogenides (TMDs). Here, the impact of forming gas anneal is investigated for PtSe-based devices. A range of annealing temperatures (150, 250, and 350 °C) were used both in inert (0/100% H/N) and forming gas (5/95% H/N) environments to separate the contribution of temperature and ambient.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
The unique properties of topological insulators such as BiSe are intriguing for their potential implementation in novel device architectures for low power and defect-tolerant logic and memory devices. Recent improvements in the synthesis of BiSe have positioned researchers to fabricate new devices to probe the limits of these materials. The fabrication of such devices, of course, requires etching of the topological insulator, in addition to other materials including gate oxides and contacts which may impact the topologically protected surface states.
View Article and Find Full Text PDFPlatinum diselenide (PtSe) is a group-10 transition metal dichalcogenide (TMD) that has unique electronic properties, in particular a semimetal-to-semiconductor transition when going from bulk to monolayer form. We report on vertical hybrid Schottky barrier diodes (SBDs) of two-dimensional (2D) PtSe thin films on crystalline n-type silicon. The diodes have been fabricated by transferring large-scale layered PtSe films, synthesized by thermally assisted conversion of predeposited Pt films at back-end-of-the-line CMOS compatible temperatures, onto SiO/Si substrates.
View Article and Find Full Text PDFThe electronic properties of the HfO/MoS interface were investigated using multifrequency capacitance-voltage (C-V) and current-voltage characterization of top-gated MoS metal-oxide-semiconductor field effect transistors (MOSFETs). The analysis was performed on few layer (5-10) MoS MOSFETs fabricated using photolithographic patterning with 13 and 8 nm HfO gate oxide layers formed by atomic layer deposition after in-situ UV-O surface functionalization. The impedance response of the HfO/MoS gate stack indicates the existence of specific defects at the interface, which exhibited either a frequency-dependent distortion similar to conventional Si MOSFETs with unpassivated silicon dangling bonds or a frequency dispersion over the entire voltage range corresponding to depletion of the HfO/MoS surface, consistent with interface traps distributed over a range of energy levels.
View Article and Find Full Text PDFWe synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor.
View Article and Find Full Text PDFSilicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst.
View Article and Find Full Text PDFMetal oxide protection layers for photoanodes may enable the development of large-scale solar fuel and solar chemical synthesis, but the poor photovoltages often reported so far will severely limit their performance. Here we report a novel observation of photovoltage loss associated with a charge extraction barrier imposed by the protection layer, and, by eliminating it, achieve photovoltages as high as 630 mV, the maximum reported so far for water-splitting silicon photoanodes. The loss mechanism is systematically probed in metal-insulator-semiconductor Schottky junction cells compared to buried junction p(+)n cells, revealing the need to maintain a characteristic hole density at the semiconductor/insulator interface.
View Article and Find Full Text PDFNanostructuring of ultrathin HfO2 films deposited on GaAs (001) substrates by high-resolution Lloyd's mirror laser interference nanolithography is described. Pattern transfer to the HfO2 film was carried out by reactive ion beam etching using CF4 and O2 plasmas. A combination of atomic force microscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis was used to characterise the various etching steps of the process and the resulting HfO2/GaAs pattern morphology, structure, and chemical composition.
View Article and Find Full Text PDF