Publications by authors named "Paul J Mohacsi"

Purpose Of Review: Progress of ventricular assist devices (VAD) technology led to improved survival and apparently low morbidity. However, from the European perspective, updated analysis of EUROMACS reveals a somewhat less impressive picture with respect to mortality and morbidity.

Recent Findings: We describe the great demand of cardiac allografts versus the lack of donors, which is larger in Europe than in the United States.

View Article and Find Full Text PDF

Background: Rapamycines, sirolimus (SRL) and everolimus (ERL), are proliferation signal inhibitors (PSIs). PSI therapy often leads to edema. We hypothesized that increased oxidative stress in response to PSIs may modulate the expression of vascular endothelial (VE)-cadherin on endothelial cells (ECs) and, subsequently, vascular permeability, which in turn may be involved in the development of edema.

View Article and Find Full Text PDF

Vascular endothelial (VE)-cadherin is an essential protein of adherens junctions of endothelial cells and plays a pivotal role in vascular homeostasis. Mammalian target of rapamycin complex 2 (mTORC2) deficient mice display defects in fetal vascular development. Blocking mTOR or the upstream kinase phosphoinositide 3-kinase (PI3K) led to a dose-dependently decrease of the VE-cadherin mRNA and protein expression.

View Article and Find Full Text PDF

We recently reported a complete change in the endothelial ABO histo-blood group phenotype of a cardiac allograft long term after B to O mismatched transplantation. In the context of the current controversy on graft recolonization with recipient endothelial cells and its importance in the development of immunological unresponsiveness, we monitored the expression of endothelial ABH histo-blood group antigens of 10 ABO-compatible, non-identical cardiac allografts over an observation period of at least 30 months. ABH antigens as well as markers for endothelial cells, erythrocytes and thrombocytes were investigated retrospectively by immunohistochemistry using monoclonal antibodies on sections of formalin-fixed, paraffin-embedded biopsies and were evaluated semi-quantitatively by microscopy.

View Article and Find Full Text PDF

For the first time in the literature to date, we report 2 cases of transplantation of yeast-infected cardiac allografts. In both cases, endocardial vegetations were observed before graft implantation. Microbiologic samples grew yeasts: Rhodotorula glutinis was found close to the left atrial appendage in the first case and Candida parapsilosis was identified in a vegetation located at the base of the tricuspid valve in the second case.

View Article and Find Full Text PDF

Background: Activation of endothelial cells (EC) in xenotransplantation is mostly induced through binding of antibodies (Ab) and activation of the complement system. Activated EC lose their heparan sulfate proteoglycan (HSPG) layer and exhibit a procoagulant and pro-inflammatory cell surface. We have recently shown that the semi-synthetic proteoglycan analog dextran sulfate (DXS, MW 5000) blocks activation of the complement cascade and acts as an EC-protectant both in vitro and in vivo.

View Article and Find Full Text PDF

We showed recently that low molecular weight dextran sulfate (DXS) acts as an endothelial cell (EC) protectant and prevents human complement- and NK cell-mediated cytotoxicity towards porcine cells in vitro. We therefore hypothesized that DXS, combined with cyclosporine A (CyA), could prevent acute vascular rejection (AVR) in the hamster-to-rat cardiac xenotransplantation model. Untreated, CyA-only, and DXS-only treated rats rejected their grafts within 4-5 days.

View Article and Find Full Text PDF

Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG.

View Article and Find Full Text PDF

Background: The innate immune system, including complement and natural killer (NK) cells, plays a critical role in activation and damage of endothelial cells (ECs) during xenograft rejection. The semisynthetic proteoglycan analog dextran sulfate (DXS, molecular weight 5,000) is known to inhibit the complement and coagulation cascades. We hypothesized that DXS may act as an "EC-protectant" preventing complement and NK lysis by functionally replacing heparan sulfate proteoglycans that are shed from the EC surface on activation of the endothelium.

View Article and Find Full Text PDF