Publications by authors named "Paul J McGinn"

High-throughput combinatorial investigations are transforming materials discovery, phase diagram development, and processing optimization. Thin-film deposition techniques are frequently used to fabricate sample libraries employed in these studies. Various adaptations of well-known thin-film chemical vapor deposition (CVD) and physical vapor deposition (PVD) techniques utilized for the synthesis of inorganic combinatorial thin-film materials libraries are reviewed, with novel processing approaches being highlighted.

View Article and Find Full Text PDF

A combinatorial synthesis and high-throughput screening process was developed for the investigation of potential oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts for use as Li-air battery cathode materials. Libraries of discrete ternary metal alloy compositions were deposited via thin-film sputtering. The samples were electrochemically tested in parallel using cyclic voltammetry in O2-saturated KOH electrolyte.

View Article and Find Full Text PDF

Bulk processing of porous silicon nanoparticles (nSi) of 50-300 nm size and surface area of 25-230 m(2)/g has been developed using a combustion synthesis method. nSi exhibits consistent photoresponse to AM 1.5 simulated solar excitation.

View Article and Find Full Text PDF

We describe development of a relatively simple, rapid route to produce combinatorial compositional oxide powder libraries by autopipetting of liquid precursors. This partitioning approach should apply equally well to any low viscosity, liquid precursors for the synthesis of oxide powders. A commercial autopipet is modified by fitting a plastic "mask" assembly beneath the pipet array in order to partition and direct liquids into crucibles.

View Article and Find Full Text PDF