Nucleic Acids Res
December 2024
Herpes simplex virus 1 (HSV-1) latently infected neurons display diverse patterns in the distribution of the viral genomes within the nucleus. A key pattern involves quiescent HSV-1 genomes sequestered in promyelocytic leukemia nuclear bodies (PML NBs) forming viral DNA-containing PML-NBs (vDCP NBs). Using a cellular model that replicates vDCP NB formation, we previously demonstrated that these viral genomes are chromatinized with the H3.
View Article and Find Full Text PDFAfter acute infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a proportion of patients experience persistent symptoms beyond 12 weeks, termed Long Covid. Understanding the mechanisms that cause this debilitating disease and identifying biomarkers for diagnostic, therapeutic, and monitoring purposes are urgently required. We detected persistently high levels of interferon-γ (IFN-γ) from peripheral blood mononuclear cells of patients with Long Covid using highly sensitive FluoroSpot assays.
View Article and Find Full Text PDFThe dynamic structure and composition of lipid membranes need to be tightly regulated to control the vast array of cellular processes from cell and organelle morphology to protein-protein interactions and signal transduction pathways. To maintain membrane integrity, sense-and-response systems monitor and adjust membrane lipid composition to the ever-changing cellular environment, but only a relatively small number of control systems have been described. Here, we explore the emerging role of the ubiquitin-proteasome system in monitoring and maintaining membrane lipid composition.
View Article and Find Full Text PDFAlveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant. AT2 dysfunction underlies many lung diseases including interstitial lung disease (ILD), in which some inherited forms result from mislocalisation of surfactant protein C (SFTPC) variants. Disease modelling and dissection of mechanisms remains challenging due to complexities in deriving and maintaining AT2 cells Here, we describe the development of expandable adult AT2-like organoids derived from human fetal lung which are phenotypically stable, can differentiate into AT1-like cells and are genetically manipulable.
View Article and Find Full Text PDFCholesterol biosynthesis is a highly regulated, oxygen-dependent pathway, vital for cell membrane integrity and growth. In fungi, the dependency on oxygen for sterol production has resulted in a shared transcriptional response, resembling prolyl hydroxylation of Hypoxia Inducible Factors (HIFs) in metazoans. Whether an analogous metazoan pathway exists is unknown.
View Article and Find Full Text PDFCertain serum proteins, including C-reactive protein (CRP) and D-dimer, have prognostic value in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, these factors are non-specific, providing limited mechanistic insight into the peripheral blood mononuclear cell (PBMC) populations that drive the pathogenesis of severe COVID-19. To identify cellular phenotypes associated with disease, we performed a comprehensive, unbiased analysis of total and plasma-membrane PBMC proteomes from 40 unvaccinated individuals with SARS-CoV-2, spanning the whole disease spectrum.
View Article and Find Full Text PDFMyelin is a multilayered membrane that tightly wraps neuronal axons, enabling efficient, high-speed signal propagation. The axon and myelin sheath form tight contacts, mediated by specific plasma membrane proteins and lipids, and disruption of these contacts causes devastating demyelinating diseases. Using two cell-based models of demyelinating sphingolipidoses, we demonstrate that altered lipid metabolism changes the abundance of specific plasma membrane proteins.
View Article and Find Full Text PDFThe vertebrate genome is under constant threat of invasion by genetic parasites. Whether the host can immediately recognize and respond to invading elements has been unclear. The discovery of the human silencing hub (HUSH) complex, and the finding that it provides immediate protection from genome invasion by silencing products of reverse transcription, have important implications for mammalian genome evolution.
View Article and Find Full Text PDFThe interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and human host factors enable the virus to propagate infections that lead to Coronavirus Disease 2019 (COVID-19). The spike protein is the largest structural component of the virus and mediates interactions essential for infection, including with the primary angiotensin-converting enzyme 2 (ACE2) receptor. We performed two independent cell-based systematic screens to determine whether there are additional proteins by which the spike protein of SARS-CoV-2 can interact with human cells.
View Article and Find Full Text PDFPrecise control of activating H3K4me3 and repressive H3K27me3 histone modifications at bivalent promoters is essential for normal development and frequently corrupted in cancer. By coupling a cell surface readout of bivalent MHC class I gene expression with whole-genome CRISPR-Cas9 screens, we identify specific roles for MTF2-PRC2.1, PCGF1-PRC1.
View Article and Find Full Text PDFQuantitative proteomics is able to provide a comprehensive, unbiased description of changes to cells caused by viral infection, but interpretation may be complicated by differential changes in infected and uninfected 'bystander' cells, or the use of non-physiological cellular models. In this paper, we use fluorescence-activated cell sorting (FACS) and quantitative proteomics to analyse cell-autonomous changes caused by authentic SARS-CoV-2 infection of respiratory epithelial cells, the main target of viral infection . First, we determine the relative abundance of proteins in primary human airway epithelial cells differentiated at the air-liquid interface (basal, secretory and ciliated cells).
View Article and Find Full Text PDFEROS (essential for reactive oxygen species) protein is indispensable for expression of gp91, the catalytic core of the phagocyte NADPH oxidase. EROS deficiency in humans is a novel cause of the severe immunodeficiency, chronic granulomatous disease, but its mechanism of action was unknown until now. We elucidate the role of EROS, showing it acts at the earliest stages of gp91 maturation.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused widespread morbidity and mortality since its onset in late 2019. Here, we demonstrate that prior infection with human cytomegalovirus (HCMV) substantially increases infection with SARS-CoV-2 in vitro. HCMV is a common herpesvirus carried by 40%-100% of the population, which can reactivate in the lung under inflammatory conditions, such as those resulting from SARS-CoV-2 infection.
View Article and Find Full Text PDFThe regulation of membrane lipid composition is critical for cellular homeostasis. Cells are particularly sensitive to phospholipid saturation, with increased saturation causing membrane rigidification and lipotoxicity. How mammalian cells sense membrane lipid composition and reverse fatty acid (FA)-induced membrane rigidification is poorly understood.
View Article and Find Full Text PDFBackground: There is currently no consensus on the diagnosis, definition, symptoms, or duration of COVID-19 illness. The diagnostic complexity of Long COVID is compounded in many patients who were or might have been infected with SARS-CoV-2 but not tested during the acute illness and/or are SARS-CoV-2 antibody negative.
Methods: Given the diagnostic conundrum of Long COVID, we set out to investigate SARS-CoV-2-specific T cell responses in patients with confirmed SARS-CoV-2 infection and/or Long COVID from a cohort of mostly non-hospitalised patients.
The outcome of infection is dependent on the ability of viruses to manipulate the infected cell to evade immunity, and the ability of the immune response to overcome this evasion. Understanding this process is key to understanding pathogenesis, genetic risk factors, and both natural and vaccine-induced immunity. SARS-CoV-2 antagonises the innate interferon response, but whether it manipulates innate cellular immunity is unclear.
View Article and Find Full Text PDFBackground: There are limited effective prophylactic/early treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral entry requires spike protein binding to the angiotensin-converting enzyme-2 receptor and cleavage by transmembrane serine protease 2 (TMPRSS2), a cell surface serine protease. Targeting of TMPRSS2 by either androgen blockade or direct inhibition is in clinical trials in early SARS-CoV-2 infection.
View Article and Find Full Text PDFInherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2′-5′-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
View Article and Find Full Text PDF