Triple-negative breast cancer (TNBC) contains the highest proportion of cancer stem-like cells (CSC), which display intrinsic resistance to currently available cancer therapies. This therapeutic resistance is partially mediated by an antioxidant defense coordinated by the transcription factor NRF2 and its downstream targets that include NAD(P)H quinone oxidoreductase 1 (NQO1). In this study, we identified the antioxidant enzymes NQO1 and superoxide dismutase 1 (SOD1) as therapeutic vulnerabilities of ALDH+ epithelial-like CSCs and CD24-/loCD44+/hi mesenchymal-like CSCs in TNBC.
View Article and Find Full Text PDFCell Death Discov
August 2024
Chemical inducers of apoptosis have been utilized for decades as tools to uncover steps of the apoptotic cascade and to treat various diseases, most notably cancer. While there are several useful compounds available, limitations in potency, universality, or speed of cell death of these pro-apoptotic agents have meant that no single compound is suitable for all (or most) purposes. Raptinal is a recently described small molecule that induces intrinsic pathway apoptosis rapidly and reliably, and consequently, has been utilized in cell culture and whole organisms for a wide range of biological studies.
View Article and Find Full Text PDFSignificance: Label-free quantitative phase imaging can potentially measure cellular dynamics with minimal perturbation, motivating efforts to develop faster and more sensitive instrumentation. We characterize fast, single-shot quantitative phase gradient microscopy (ss-QPGM) that simultaneously acquires multiple polarization components required to reconstruct phase images. We integrate a computationally efficient least squares algorithm to provide real-time, video-rate imaging (up to ).
View Article and Find Full Text PDFAlthough survival from breast cancer has dramatically increased, many will develop recurrent, metastatic disease. Unfortunately, survival for this stage of disease remains very low. Activating the immune system has incredible promise since it has the potential to be curative.
View Article and Find Full Text PDFThe antibiotic fusidic acid (FA) is used to treat Staphylococcus aureus infections. It inhibits protein synthesis by binding to elongation factor G (EF-G) and preventing its release from the ribosome after translocation. While FA, due to permeability issues, is only effective against gram-positive bacteria, the available structures of FA-inhibited complexes are from gram-negative model organisms.
View Article and Find Full Text PDFInfections caused by Gram-negative pathogens are increasingly prevalent and are typically treated with broad-spectrum antibiotics, resulting in disruption of the gut microbiome and susceptibility to secondary infections. There is a critical need for antibiotics that are selective both for Gram-negative bacteria over Gram-positive bacteria, as well as for pathogenic bacteria over commensal bacteria. Here we report the design and discovery of lolamicin, a Gram-negative-specific antibiotic targeting the lipoprotein transport system.
View Article and Find Full Text PDFThe functions of proteins bearing multiple post-translational modifications (PTMs) are modulated by their modification patterns, yet precise characterization of them is difficult. MEK1 (also known as MAP2K1) is one such example that acts as a gatekeeper of the mitogen-activating protein kinase (MAPK) pathway and propagates signals via phosphorylation by upstream kinases. In principle, top-down mass spectrometry can precisely characterize whole MEK1 proteoforms, but fragmentation methods that would enable the site-specific characterization of labile modifications on 43 kDa protein ions result in overly dense tandem mass spectra.
View Article and Find Full Text PDFA compound's overall contour impacts its ability to elicit biological response, rendering access to distinctly shaped molecules desirable. A natural product's framework can be modified, but only if it is abundant and contains suitably modifiable functional groups. Here we introduce a programmable strategy for concise synthesis of precisely altered scaffolds of scarce bridged polycyclic alkaloids.
View Article and Find Full Text PDFCancers (Basel)
December 2023
Lung and breast cancers rank as two of the most common and lethal tumors, accounting for a substantial number of cancer-related deaths worldwide. While the past two decades have witnessed promising progress in tumor therapy, developing targeted tumor therapies continues to pose a significant challenge. NAD(P)H quinone oxidoreductase 1 (NQO1), a two-electron reductase, has been reported as a promising therapeutic target across various solid tumors.
View Article and Find Full Text PDFUnlabelled: Currently, there are no clinically approved drugs that directly thwart mutant KRAS G12D, a major driver of human cancer. Here, we report on the discovery of a small molecule, KRB-456, that binds KRAS G12D and inhibits the growth of pancreatic cancer patient-derived tumors. Protein nuclear magnetic resonance studies revealed that KRB-456 binds the GDP-bound and GCP-bound conformation of KRAS G12D by forming interactions with a dynamic allosteric binding pocket within the switch-I/II region.
View Article and Find Full Text PDFGram-negative antibiotic development has been hindered by a poor understanding of the types of compounds that can accumulate within these bacteria. The presence of efflux pumps and substrate-specific outer-membrane porins in Pseudomonas aeruginosa renders this pathogen particularly challenging. As a result, there are few antibiotic options for P.
View Article and Find Full Text PDFPancreatic cancer is among the top five leading causes of cancer-related deaths worldwide, with poor overall survival rates. Current therapies for pancreatic cancer lack tumor specificity, resulting in harmful effects on normal tissues. Therefore, developing tumor-specific agents for the treatment of pancreatic cancer is critical.
View Article and Find Full Text PDFThe treatment of metastatic uveal melanoma remains a major clinical challenge. Procaspase-3, a proapoptotic protein and precursor to the key apoptotic executioner caspase-3, is overexpressed in a wide range of malignancies, and the drug PAC-1 leverages this overexpression to selectively kill cancer cells. Herein, we investigate the efficacy of PAC-1 against uveal melanoma cell lines and report the synergistic combination of PAC-1 and entrectinib.
View Article and Find Full Text PDFImmune checkpoint blockade (ICB) has revolutionized cancer therapy but has had limited utility in several solid tumors such as breast cancer, a major cause of cancer-related mortality in women. Therefore, there is considerable interest in alternate strategies to promote an anti-cancer immune response. We demonstrate that NR0B2, a protein involved in cholesterol homeostasis, functions within myeloid immune cells to modulate the NLRP3 inflammasome and reduce the expansion of immune-suppressive regulatory T cells (T).
View Article and Find Full Text PDFBackground: Procaspase-3 (PC-3) is overexpressed in various tumor types, including gliomas. Targeted PC-3 activation combined with chemotherapy is a novel strategy for treating patients with high-grade gliomas, with promising preclinical activity. This study aimed to define safety and tolerability of procaspase-activating compound-1 (PAC-1) in combination with temozolomide (TMZ) for patients with recurrent high-grade astrocytomas.
View Article and Find Full Text PDFUnlabelled: Several emerging therapies kill cancer cells primarily by inducing necrosis. As necrosis activates immune cells, potentially, uncovering the molecular drivers of anticancer therapy-induced necrosis could reveal approaches for enhancing immunotherapy efficacy. To identify necrosis-associated genes, we performed a genome-wide CRISPR-Cas9 screen with negative selection against necrosis-inducing preclinical agents BHPI and conducted follow-on experiments with ErSO.
View Article and Find Full Text PDFBackground: Treatment of some blood cancers with T cells that express a chimeric antigen receptor (CAR) against CD19 have shown remarkable results. In contrast, CAR-T cell efficacy against solid tumors has been difficult to achieve.
Methods: To examine the potential of CAR-T cell treatments against ovarian cancers, we used the mouse ovarian cancer cell line ID8 in an intraperitoneal model that exhibits disseminated solid tumors in female C57BL/6J mice.
Viral macrodomains, which can bind to and/or hydrolyze adenine diphosphate ribose (ADP-ribose or ADPr) from proteins, have been suggested to counteract host immune response and be viable targets for the development of antiviral drugs. Therefore, developing high-throughput screening (HTS) techniques for macrodomain inhibitors is of great interest. Herein, using a novel tracer , an ADP-ribose compound conjugated with tetramethylrhodamine, we developed a robust fluorescence polarization assay for various viral and human macrodomains including SARS-CoV-2 Macro1, VEEV Macro, CHIKV Macro, human MacroD1, MacroD2, and PARP9 Macro2.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1021/acscentsci.2c00598.
View Article and Find Full Text PDF