The changing nature of the SARS-CoV-2 pandemic poses unprecedented challenges to the world's health systems. Emerging spike gene variants jeopardize global efforts to produce immunity and reduce morbidity and mortality. These challenges require effective real-time genomic surveillance solutions that the medical community can quickly adopt.
View Article and Find Full Text PDFBackground: CRISPR and CRISPR-flanking genomic regions are important for molecular epidemiology of Mycobacterium tuberculosis complex (MTBC) strains, and potentially for adaptive immunity to phage and plasmid DNA, and endogenous roles in the bacterium. Genotyping in the Israel National Mycobacterium Reference Center Tel-Aviv of over 1500 MTBC strains from 2008-2013 showed three strains with validated negative 43-spacer spoligotypes, that is, with putatively deleted direct repeat regions (deleted-DR/CRISPR regions). Two isolates of each of three negative spoligotype MTBC (a total of 6 isolates) were subjected to Next Generation Sequencing (NGS).
View Article and Find Full Text PDFAs part of the Israel National Program for Prevention and Control of Tuberculosis, the molecular epidemiology of new tuberculosis cases is monitored. Prospective screening showed that about 20% of all new cases of culture-positive tuberculosis (43 of 222) in Israel in the year 2008 were caused by certain Mycobacterium tuberculosis strains of the central Asian (CAS) spoligotype lineage. The identity and similarity of these strains by mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing form a lineage we call PETRA for polymorphic at locus ETR A.
View Article and Find Full Text PDFIn a project on the biodiversity of chickens funded by the European Commission (EC), eight laboratories collaborated to assess the genetic variation within and between 52 populations from a wide range of chicken types. Twenty-two di-nucleotide microsatellite markers were used to genotype DNA pools of 50 birds from each population. The polymorphism measures for the average, the least polymorphic population (inbred C line) and the most polymorphic population (Gallus gallus spadiceus) were, respectively, as follows: number of alleles per locus, per population: 3.
View Article and Find Full Text PDF