Publications by authors named "Paul J Childress"

Achieving bone union remains a significant clinical dilemma. The use of osteoinductive agents, specifically bone morphogenetic proteins (BMPs), has gained wide attention. However, multiple side effects, including increased incidence of cancer, have renewed interest in investigating alternatives that provide safer, yet effective bone regeneration.

View Article and Find Full Text PDF

As professional secretory cells, β-cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic β-cell, the majority of factors identified to promote growth and development function primarily at the level of transcription.

View Article and Find Full Text PDF

Unlabelled: As professional secretory cells, beta cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic beta cell, the majority of factors identified to promote growth and development function primarily at the level of transcription.

View Article and Find Full Text PDF

Unloading associated with spaceflight results in bone loss and increased fracture risk. Bone morphogenetic protein 2 (BMP2) is known to enhance bone formation, in part, through molecular pathways associated with mechanical loading; however, the effects of BMP2 during spaceflight remain unclear. Here, we investigated the systemic effects of BMP2 on mice sustaining a femoral fracture followed by housing in spaceflight (International Space Station or ISS) or on Earth.

View Article and Find Full Text PDF

Adverse effects of spaceflight on musculoskeletal health increase the risk of bone injury and impairment of fracture healing. Its yet elusive molecular comprehension warrants immediate attention, since space travel is becoming more frequent. Here we examined the effects of spaceflight on bone fracture healing using a 2 mm femoral segmental bone defect (SBD) model.

View Article and Find Full Text PDF

With increased human presence in space, bone loss and fractures will occur. Thrombopoietin (TPO) is a recently patented bone healing agent. Here, we investigated the systemic effects of TPO on mice subjected to spaceflight and sustaining a bone fracture.

View Article and Find Full Text PDF

Angiogenesis is a vital process during the regeneration of bone tissue. The aim of this study was to investigate angiogenesis at the fracture site as well as at distal locations from obesity-induced type 2 diabetic mice that were treated with bone morphogenetic protein-2 (BMP-2, local administration at the time of surgery) to heal a femoral critical sized defect (CSD) or saline as a control. Mice were fed a high fat diet (HFD) to induce a type 2 diabetic-like phenotype while low fat diet (LFD) animals served as controls.

View Article and Find Full Text PDF

Prolonged residence of mice in spaceflight is a scientifically robust and ethically ratified model of muscle atrophy caused by continued unloading. Under the Rodent Research Program of the National Aeronautics and Space Administration (NASA), we assayed the large-scale mRNA and metabolomic perturbations in the quadriceps of C57BL/6j male mice that lived in spaceflight (FLT) or on the ground (control or CTR) for approximately 4 weeks. The wet weights of the quadriceps were significantly reduced in FLT mice.

View Article and Find Full Text PDF

Spaceflight results in reduced mechanical loading of the skeleton, which leads to dramatic bone loss. Low bone mass is associated with increased fracture risk, and this combination may compromise future, long-term, spaceflight missions. Here, we examined the systemic effects of spaceflight and fracture surgery/healing on several non-injured bones within the axial and appendicular skeleton.

View Article and Find Full Text PDF

A goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking the transcription factor nuclear matrix protein 4 (, , , ) respond to several classes of osteoporosis drugs with enhanced bone formation compared with wild-type (WT) animals. mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and enhanced mineralization during osteoblast differentiation.

View Article and Find Full Text PDF

Spaceflight results in bone loss like that associated with osteoporosis or decreased weight-bearing (for example, high-energy trauma such as explosive injuries and automobile accidents). Thus, the unique spaceflight laboratory on the International Space Station presents the opportunity to test bone healing agents during weightlessness. We are collaborating with NASA and the US Army to study bone healing in spaceflight.

View Article and Find Full Text PDF

Emerging evidence demonstrates that megakaryocytes (MK) play key roles in regulating skeletal homeostasis and hematopoiesis. To test if the loss of MK negatively impacts osteoblastogenesis and hematopoiesis, we generated conditional knockout mice where Mpl, the receptor for the main MK growth factor, thrombopoietin, was deleted specifically in MK (Mpl;PF4cre). Unexpectedly, at 12 weeks of age, these mice exhibited a 10-fold increase in platelets, a significant expansion of hematopoietic/mesenchymal precursors, and a remarkable 20-fold increase in femoral midshaft bone volume.

View Article and Find Full Text PDF

Networking between hematopoietic stem cells (HSCs) and cells of the hematopoietic niche is critical for stem cell function and maintenance of the stem cell pool. We characterized calvariae-resident osteomacs (OMs) and their interaction with megakaryocytes to sustain HSC function and identified distinguishing properties between OMs and bone marrow (BM)-derived macrophages. OMs, identified as CD45F4/80 cells, were easily detectable (3%-5%) in neonatal calvarial cells.

View Article and Find Full Text PDF

Megakaryocytes (MKs) can induce proliferation of calvarial osteoblasts [Ciovacco et al., 2009], but this same phenomenon has not been reported for bone marrow stromal populations from long bones. Bone marrow contains several types of progenitor cells which can be induced to differentiate into multiple cell types.

View Article and Find Full Text PDF

The Achilles tendon is a frequent site for degeneration, and advanced understanding of this pathology requires an animal model that replicates the human condition. The aim of this study was to explore whether intratendinous collagenase injection combined with treadmill running created a pathology in the rat Achilles tendon consistent with human Achilles tendinosis. Collagenase was injected into one Achilles tendon of 88 high-capacity running (HCR) rats, which were randomized into treadmill running and cage control groups.

View Article and Find Full Text PDF

PTH is a potent calcium-regulating factor that has skeletal anabolic effects when administered intermittently or catabolic effects when maintained at consistently high levels. Bone cells express PTH receptors, but the cellular responses to PTH in bone are incompletely understood. Wnt signaling has recently been implicated in the osteo-anabolic response to the hormone.

View Article and Find Full Text PDF

Parathyroid hormone (PTH) restores bone mass to the osteopenic skeleton, but significant questions remain as to the underlying mechanisms. The receptor for advanced glycation end products (RAGE) is a multiligand receptor of the immunoglobulin superfamily; however, recent studies indicate a role in bone physiology. We investigated the significance of RAGE to hormone-induced increases in bone by treating 10-wk-old female Rage-knockout (KO) and wild-type (WT) mice with human PTH-(1-34) at 30 microg.

View Article and Find Full Text PDF