A codon modification strategy was used to attenuate the avian pathogenicity of an oncolytic mesogenic Newcastle disease virus (NDV) by targeting the three major virulence factors: the fusion (F) protein, hemagglutinin neuraminidase (HN) and phosphoprotein (P). Recoding the F and HN genes with rare codons greatly reduced expression of both F and HN proteins and resulted in their low incorporation into virions. The F and HN recoded virus was partially attenuated in chickens even when the F protein cleavage site was modified.
View Article and Find Full Text PDFGrowth rate and nutrient availability are the primary determinants of size in single-celled organisms: rapidly growing Escherichia coli cells are more than twice as large as their slow growing counterparts. Here we report the identification of the glucosyltransferase OpgH as a nutrient-dependent regulator of E. coli cell size.
View Article and Find Full Text PDFBacterial cell division typically requires assembly of the cytoskeletal protein FtsZ into a ring (Z-ring) at the nascent division site that serves as a foundation for assembly of the division apparatus. High resolution imaging suggests that the Z-ring consists of short, single-stranded polymers held together by lateral interactions. Several proteins implicated in stabilizing the Z-ring enhance lateral interactions between FtsZ polymers in vitro.
View Article and Find Full Text PDFApicomplexan parasites, such as Toxoplasma gondii, rely on actin-based motility for cell invasion, yet conventional actin does not appear to be required for cell division in these parasites. Apicomplexans also contain a variety of actin-related proteins (Arps); however, most of these not directly orthologous to Arps in well-studied systems. We recently identified an apicomplexan-specific member of this family called Actin-Like Protein 1, (ALP1), which plays a role in the assembly of vesicular components recruited to the inner membrane complex (IMC) of daughter cells during cell division.
View Article and Find Full Text PDF