Publications by authors named "Paul J Benke"

Article Synopsis
  • RORA is a gene linked to the development and function of the cerebellum, and this study explores the largest group of individuals with RORA-related neurodevelopmental disorders (RORA-NDD).
  • The study involved 40 participants with various pathogenic variants of RORA, revealing a range of clinical features including developmental and intellectual disabilities, as well as cerebellar symptoms that can vary in onset and severity.
  • Findings indicate that certain missense variants are associated with more severe cerebellar issues, and common elements of RORA-NDD include developmental disabilities, cerebellar symptoms, and different types of myoclonic epilepsy.
View Article and Find Full Text PDF

O-GlcNAcylation is an essential protein modification catalyzed by O-GlcNAc transferase (OGT). Missense variants in OGT are linked to a novel intellectual disability syndrome known as OGT congenital disorder of glycosylation (OGT-CDG). The mechanisms by which OGT missense variants lead to this heterogeneous syndrome are not understood, and no unified method exists for dissecting pathogenic from non-pathogenic variants.

View Article and Find Full Text PDF

SCY1-like protein 2 (SCYL2) is a member of the SCY1-like pseudokinase family which regulates secretory protein trafficking. It plays a crucial role in the nervous system by suppressing excitotoxicity in the developing brain. Scyl2 knockout mice have excess prenatal mortality and survivors show severe neurological dysfunction.

View Article and Find Full Text PDF

The collection of known genetic etiologies of neurodevelopmental disorders continues to increase, including several syndromes associated with defects in zinc finger protein transcription factors (ZNFs) that vary in clinical severity from mild learning disabilities and developmental delay to refractory seizures and severe autism spectrum disorder. Here we describe a new neurodevelopmental disorder associated with variants in ZBTB47 (also known as ZNF651), which encodes zinc finger and BTB domain-containing protein 47. Exome sequencing (ES) was performed for five unrelated patients with neurodevelopmental disorders.

View Article and Find Full Text PDF

Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is an essential, ubiquitously abundant protein involved in mRNA processing. Genetic variants in other members of the HNRNP family have been associated with neurodevelopmental disorders. Here, we describe 13 individuals with global developmental delay, intellectual disability, behavioral abnormalities, and subtle facial dysmorphology with heterozygous HNRNPC germline variants.

View Article and Find Full Text PDF
Article Synopsis
  • De novo variants contribute significantly to neurodevelopmental disorders (NDDs), but due to their rarity, understanding the full range of symptoms and genetic variations linked to specific genes like KDM6B poses a challenge.
  • The study of 85 individuals with KDM6B variants reveals that cognitive deficits are common, while features like coarse facies and skeletal issues are rare, indicating that existing descriptions may be misleading.
  • Through innovative testing methods and studies on Drosophila, the researchers highlight the critical role of KDM6B in cognitive function and the importance of international collaboration for accurate diagnosis of rare disorders.
View Article and Find Full Text PDF

Objective: Collier/Olf/EBF (COE) transcription factors have distinct expression patterns in the developing and mature nervous system. To date, a neurological disease association has been conclusively established for only the Early B-cell Factor-3 (EBF3) COE family member through the identification of heterozygous loss-of-function variants in individuals with autism spectrum/neurodevelopmental disorders (NDD). Here, we identify a symptom severity risk association with missense variants primarily disrupting the zinc finger domain (ZNF) in EBF3-related NDD.

View Article and Find Full Text PDF

De novo variants in QRICH1 (Glutamine-rich protein 1) has recently been reported in 11 individuals with intellectual disability (ID). The function of QRICH1 is largely unknown but it is likely to play a key role in the unfolded response of endoplasmic reticulum stress through transcriptional control of proteostasis. In this study, we present 27 additional individuals and delineate the clinical and molecular spectrum of the individuals (n = 38) with QRICH1 variants.

View Article and Find Full Text PDF

Oligodontia is the congenital absence of six or more teeth and comprises the more severe forms of tooth agenesis. Many genes have been implicated in the etiology of tooth agenesis, which is highly variable in its clinical presentation. The purpose of this study was to identify associations between genetic mutations and clinical features of oligodontia patients.

View Article and Find Full Text PDF

Purpose: Growth differentiation factor 11 (GDF11) is a key signaling protein required for proper development of many organ systems. Only one prior study has associated an inherited GDF11 variant with a dominant human disease in a family with variable craniofacial and vertebral abnormalities. Here, we expand the phenotypic spectrum associated with GDF11 variants and document the nature of the variants.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the clinical characteristics and genetic variations associated with the DHX30-related neurodevelopmental disorder, especially focusing on new missense variants in the gene.
  • Researchers collected clinical and genetic data from affected individuals via social media, collaboration networks, and analyzed the effects of these variants on cellular functions and development using various experimental models, including zebrafish.
  • Findings revealed that individuals with missense variants presented with severe developmental issues, while those with variants leading to milder haploinsufficiency showed less severe symptoms, suggesting the presence of two distinct clinical subtypes based on the type and location of the genetic variants.
View Article and Find Full Text PDF

Membrane Protein Palmitoylated 5 (MPP5) is a highly conserved apical complex protein essential for cell polarity, fate and survival. Defects in cell polarity are associated with neurologic disorders including autism and microcephaly. MPP5 is essential for neurogenesis in animal models, but human variants leading to neurologic impairment have not been described.

View Article and Find Full Text PDF

Primary mitochondrial complex I deficiency is the most common defect of the mitochondrial respiratory chain. It is caused by defects in structural components and assembly factors of this large protein complex. Mutations in the assembly factor NDUFAF5 are rare, with only five families reported to date.

View Article and Find Full Text PDF

Background: Partial monosomy 21 is a rare finding with variable sizes and deletion breakpoints, presenting with a broad spectrum of phenotypes.

Case Presentation: We report a 10-month-old boy with short stature, minor anomalies and mild motor delay. The patient had a monosomy 21 and duplication of the 21q22.

View Article and Find Full Text PDF

Background: Patients with autism spectrum disorder and developmental delay or encephalopathy rarely demonstrate no or negligible hair and nail growth, suggesting a biotin-responsive clinical disorder.

Methods: A ten-year-old girl presented with features of autism spectrum disorder, isolated headaches, and episodes of headaches and limb shaking. Her medical history revealed that her hair and nails did not grow.

View Article and Find Full Text PDF

Serine biosynthesis defects are autosomal recessive metabolic disorders resulting from the deficiency of any of the three enzymes involved in de novo serine biosynthesis, specifically phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). In this study, we performed metabolomic profiling on 4 children with serine biosynthesis defects; 3 with PGDH deficiency and 1 with PSAT deficiency. The evaluations were performed at baseline and with serine and glycine supplementation.

View Article and Find Full Text PDF
Article Synopsis
  • Developmental and epileptic encephalopathy (DEE) combines epilepsy and intellectual disability, often leading to developmental stagnation or decline, with unknown causes in most cases.
  • Researchers conducted whole-genome sequencing on 197 DEE patients and their healthy parents to identify new genetic mutations linked to the condition.
  • They established a molecular diagnosis for 32% of the individuals, finding that de novo point mutations were the primary cause, suggesting a unique genetic profile for DEE compared to intellectual disability without epilepsy.
View Article and Find Full Text PDF

Background: The list of Mendelian disorders of the epigenetic machinery has expanded rapidly during the last 5 years. A few missense variants in the chromatin remodeler have been found in several large-scale sequencing efforts focused on uncovering the genetic aetiology of autism.

Objectives: To explore whether variants in are associated with a human phenotype.

View Article and Find Full Text PDF

Serine biosynthesis defects can present in a broad phenotypic spectrum ranging from Neu-Laxova syndrome, a lethal disease with multiple congenital anomalies at the severe end, to an infantile disease with severe psychomotor retardation and seizures as an intermediate phenotype, to a childhood disease with intellectual disability at the mild end. In this report we present 6 individuals from 3 families with infantile phosphoglycerate dehydrogenase (PGDH) deficiency who presented with psychomotor delay, growth failure, microcephaly, and spasticity. The phenotype was variable with absence of seizures in 2 sisters in family 1 and 1 infant in family 2 and seizures with pronounced happy affect in 3 sisters in family 3.

View Article and Find Full Text PDF
Article Synopsis
  • The human sodium-dependent multivitamin transporter (hSMVT), linked to the SLC5A6 gene, is crucial for the uptake of key nutrients like biotin and pantothenic acid.
  • Researchers identified two mutations (R94X and R123L) in a child suffering from serious health issues, including failure to thrive, brain abnormalities, and developmental delays.
  • Upon providing the child with supplements of the deficient vitamins, clinical improvements were observed, underscoring the importance of SLC5A6 for brain health and various bodily functions.
View Article and Find Full Text PDF

WNT10A is a signaling molecule involved in tooth development, and WNT10A defects are associated with tooth agenesis. We characterized Wnt10a null mice generated by the knockout mouse project (KOMP) and six families with WNT10A mutations, including a novel p.Arg104Cys defect, in the absence of EDA,EDAR, or EDARADD variations.

View Article and Find Full Text PDF

Background: Fragile X syndrome (FXS) is caused by loss of function mutations in the FMR1 gene. Trinucleotide CGG-repeat expansions, resulting in FMR1 gene silencing, are the most common mutations observed at this locus. Even though the repeat expansion mutation is a functional null mutation, few conventional mutations have been identified at this locus, largely due to the clinical laboratory focus on the repeat tract.

View Article and Find Full Text PDF