Publications by authors named "Paul J Beatty"

Social species rely on the ability to modulate feedback-monitoring in social contexts to adjust one's actions and obtain desired outcomes. When being awarded positive outcomes during a gambling task, feedback-monitoring is attenuated when strangers are rewarded, as less value is assigned to the awarded outcome. This difference in feedback-monitoring can be indexed by an event-related potential (ERP) component known as the Reward Positivity (RewP), whose amplitude is enhanced when receiving positive feedback.

View Article and Find Full Text PDF

Relatively little is known about the relation between subthreshold error corrections and post-error behavioral compensations. The present study utilized lateralized beta power, which has been shown to index response preparation, to examine subthreshold error corrections in a task known to produce response conflict, the Simon task. We found that even when an overt correction is not made, greater activation of the corrective response, indexed by beta suppression ipsilateral to the initial responding hand, predicted post-error speeding, and enhanced post-error accuracy at the single-trial level.

View Article and Find Full Text PDF

The present study investigated the neural dynamics of error processing in both the time and frequency domains, as well as associated behavioral phenomena, at the single-trial level. We used a technique that enabled us to separately investigate the evoked and induced aspects of the EEG signal (Cohen & Donner, 2013, Journal of Neurophysiology, 110[12], 2752-2763). We found that at the single-trial level, while the (evoked) error-related negativity (ERN) predicted only post-error slowing (PES)-and only when errors occurred on incongruent trials-induced frontal midline theta power served as a robust predictor of both PES and post-error accuracy (PEA) regardless of stimulus congruency.

View Article and Find Full Text PDF

With the rise of increasingly complex artificial intelligence (AI), there is a need to design new methods to monitor AI in a transparent, human-aware manner. Decades of research have demonstrated that people, who are not aware of the exact performance levels of automated algorithms, often experience a mismatch in expectations. Consequently, they will often provide either too little or too much trust in an algorithm.

View Article and Find Full Text PDF

Empirical research demonstrates that when the time following error commission is constrained, subsequent sensory processing can be impaired (Buzzell et al., 2017). This reduction in sensory processing is presumably due to a bottleneck for cognitive resources produced by an overlap between error processing and subsequent stimulus processing.

View Article and Find Full Text PDF

In social interactions, we rely on nonverbal cues like gaze direction to understand the behavior of others. How we react to these cues is affected by whether they are believed to originate from an entity with a mind, capable of having internal states (i.e.

View Article and Find Full Text PDF

Empirical evidence indicates that detecting one's own mistakes can serve as a signal to improve task performance. However, little work has focused on how task constraints, such as the response-stimulus interval (RSI), influence post-error adjustments. In the present study, event-related potential (ERP) and behavioral measures were used to investigate the time course of error-related processing while humans performed a difficult visual discrimination task.

View Article and Find Full Text PDF