Publications by authors named "Paul J Ackerman"

Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients.

View Article and Find Full Text PDF

Topological solitons are non-singular but topologically nontrivial structures in fields, which have fundamental significance across various areas of physics, similar to singular defects. Production and observation of singular and solitonic topological structures remain a complex undertaking in most branches of science - but in soft matter physics, they can be realized within the director field of a liquid crystal. Additionally, it has been shown that confining liquid crystals to spherical shells using microfluidics resulted in a versatile experimental platform for the dynamical study of topological transformations between director configurations.

View Article and Find Full Text PDF

Active colloids and liquid crystals are capable of locally converting the macroscopically supplied energy into directional motion and promise a host of new applications, ranging from drug delivery to cargo transport at the mesoscale. Here we uncover how topological solitons in liquid crystals can locally transform electric energy to translational motion and allow for the transport of cargo along directions dependent on frequency of the applied electric field. By combining polarized optical video microscopy and numerical modeling that reproduces both the equilibrium structures of solitons and their temporal evolution in applied fields, we uncover the physical underpinnings behind this reconfigurable motion and study how it depends on the structure and topology of solitons.

View Article and Find Full Text PDF

We study the quantum-mechanical effects arising in a single semiconductor core/shell quantum dot (QD) controllably sandwiched between two plasmonic nanorods. Control over the position and the "sandwich" confinement structure is achieved by the use of a linear-trap liquid crystal (LC) line defect and laser tweezers that "push" the sandwich together. This arrangement allows for the study of exciton-plasmon interactions in a single structure, unaltered by ensemble effects or the complexity of dielectric interfaces.

View Article and Find Full Text PDF

Liquid crystals are widely known for their facile responses to external fields, which forms a basis of the modern information display technology. However, switching of molecular alignment field configurations typically involves topologically trivial structures, although singular line and point defects often appear as short-lived transient states. Here, we demonstrate electric and magnetic switching of nonsingular solitonic structures in chiral nematic and ferromagnetic liquid crystals.

View Article and Find Full Text PDF

Skyrmions are topologically protected continuous field configurations that cannot be smoothly transformed to a uniform state. They behave like particles and give origins to the field of skyrmionics that promises racetrack memory and other technological applications. Unraveling the non-equilibrium behavior of such topological solitons is a challenge.

View Article and Find Full Text PDF

Three-dimensional (3D) topological solitons are continuous but topologically nontrivial field configurations localized in 3D space and embedded in a uniform far-field background, that behave like particles and cannot be transformed to a uniform state through smooth deformations. Many topologically nontrivial 3D solitonic fields have been proposed. Yet, according to the Hobart-Derrick theorem, physical systems cannot host them, except for nonlinear theories with higher-order derivatives such as the Skyrme-Faddeev model.

View Article and Find Full Text PDF

The design and practical realization of composite materials that combine fluidity and different forms of ordering at the mesoscopic scale are among the grand fundamental science challenges. These composites also hold a great potential for technological applications, ranging from information displays to metamaterials. Here we introduce a fluid with coexisting polar and biaxial ordering of organic molecular and magnetic colloidal building blocks exhibiting the lowest symmetry orientational order.

View Article and Find Full Text PDF

Handedness of the director twist in cholesteric liquid crystals is commonly assumed to be the same throughout the medium, determined solely by the chirality of constituent molecules or chiral additives, albeit distortions of the ground-state helicoidal configuration often arise due to the effects of confinement and external fields. We directly probe the twist directionality of liquid crystal director structures through experimental three-dimensional imaging and numerical minimization of the elastic free energy and show that spatially localized regions of handedness opposite to that of the chiral liquid crystal ground state can arise in the proximity of twisted-soliton-bound topological point defects. In chiral nematic liquid crystal confined to a film that has a thickness less than the cholesteric pitch and perpendicular surface boundary conditions, twisted solitonic structures embedded in a uniform unwound far-field background with chirality-matched handedness locally relieve confinement-imposed frustration and tend to be accompanied by point defects and smaller geometry-required, energetically costly regions of opposite twist handedness.

View Article and Find Full Text PDF

We study plasmon-exciton interaction by using topological singularities to spatially confine, selectively deliver, cotrap and optically probe colloidal semiconductor and plasmonic nanoparticles. The interaction is monitored in a single quantum system in the bulk of a liquid crystal medium where nanoparticles are manipulated and nanoconfined far from dielectric interfaces using laser tweezers and topological configurations containing singularities. When quantum dot-in-a-rod particles are spatially colocated with a plasmonic gold nanoburst particle in a topological singularity core, its fluorescence increases because blinking is significantly suppressed and the radiative decay rate increases by nearly an order of magnitude owing to the Purcell effect.

View Article and Find Full Text PDF

We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M(r). Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M(r), which exhibit a strong sensitivity to the direction of weak magnetic fields ∼1  mT.

View Article and Find Full Text PDF

Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called 'A-phase' in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called 'hopfions', or 'torons' when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains that exhibit electrostriction.

View Article and Find Full Text PDF

We explore spatially localized solitonic configurations of a director field, generated using optical realignment and laser-induced heating, in frustrated chiral nematic liquid crystals confined between substrates with perpendicular surface anchoring. We demonstrate that, in addition to recently studied torons and Hopf-fibration solitonic structures (hopfions), one can generate a host of other axially symmetric stable and metastable director field configurations where local twist is matched to the surface boundary conditions through introduction of point defects and loops of singular and nonsingular disclinations. The experimentally demonstrated structures include the so-called "baby-skyrmions" in the form of double twist cylinders oriented perpendicular to the confining substrates where their double twist field configuration is matched to the perpendicular boundary conditions by loops of twist disclinations.

View Article and Find Full Text PDF

The Hopf fibration is an example of a texture: a topologically stable, smooth, global configuration of a field. Here we demonstrate the controlled sculpting of the Hopf fibration in nematic liquid crystals through the control of point defects. We demonstrate how these are related to torons by use of a topological visualization technique derived from the Pontryagin-Thom construction.

View Article and Find Full Text PDF

Condensed matter systems with topological defects in the ground states range from the Abrikosov phases in superconductors, to various blue phases and twist grain boundary phases in liquid crystals, and to phases of skyrmion lattices in chiral ferromagnets and Bose-Einstein condensates. In nematic and chiral nematic liquid crystals, which are true fluids with long-range orientational ordering of constituent molecules, point and line defects spontaneously occur as a result of symmetry-breaking phase transitions or due to flow, but they are unstable, hard to control, and typically annihilate with time. Here we describe the optical generation of two-dimensional crystalline, quasicrystalline, and arbitrary ensembles of particlelike structures manifesting both skyrmionlike and Hopf fibration features--dubbed "torons"--composed of looped double twist cylinders and point defects embedded in a uniform director field.

View Article and Find Full Text PDF

Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable "optical drawing" of self-assembled defect clusters in liquid crystals.

View Article and Find Full Text PDF

We describe laser-induced two-dimensional periodic photonic structures formed by localized particle-like excitations in an untwisted confined cholesteric liquid crystal. The individual particle-like excitations (dubbed "Torons") contain three-dimensional twist of the liquid crystal director matched to the uniform background director field by topological point defects. Using both single-beam-steering and holographic pattern generation approaches, the periodic crystal lattices are tailored by tuning their periodicity, reorienting their crystallographic axes, and introducing defects.

View Article and Find Full Text PDF

We demonstrate scaffolding of plasmonic nanoparticles by topological defects induced by colloidal microspheres to match their surface boundary conditions with a uniform far-field alignment in a liquid crystal host. Displacing energetically costly liquid crystal regions of reduced order, anisotropic nanoparticles with concave or convex shapes not only stably localize in defects but also self-orient with respect to the microsphere surface. Using laser tweezers, we manipulate the ensuing nanoparticle-microsphere colloidal dimers, probing the strength of elastic binding and demonstrating self-assembly of hierarchical colloidal superstructures such as chains and arrays.

View Article and Find Full Text PDF