Publications by authors named "Paul Heslop"

We study integrated correlators of four superconformal primaries O_{p} with arbitrary charges p in N=4 super Yang-Mills theory. The ⟨O_{2}O_{2}O_{p}O_{p}⟩ integrated correlators can be computed by supersymmetric localization, whereas correlators with more general charges are currently not accessible from this method and, in general, contain complicated multiple zeta values. Nevertheless, we observe that, if one sums over the contributions from all different channels in a given correlator, then all the multiple zeta values (and products of ζ's) cancel, leaving only ζ(2ℓ+1) at ℓ loops.

View Article and Find Full Text PDF

We use the soft-collinear bootstrap to construct the 8-loop integrand for the 4-point amplitude and 4-stress-tensor correlation function in planar maximally supersymmetric Yang-Mills theory. Both have a unique representation in terms of planar, conformal integrands grouped according to a hidden symmetry discovered for correlation functions. The answer we find exposes a fundamental tension between manifest locality and planarity with manifest conformality not seen at lower loops.

View Article and Find Full Text PDF

It is known that the Yangian of PSU(2,2|4) is a symmetry of the tree-level S matrix of N=4 super Yang-Mills theory. On the other hand, the complete one-loop dilatation operator in the same theory commutes with the level-one Yangian generators only up to certain boundary terms found by Dolan, Nappi, and Witten. Using a result by Zwiebel, we show how the Yangian symmetry of the tree-level S matrix of N=4 super Yang-Mills theory implies precisely the Yangian invariance, up to boundary terms, of the one-loop dilatation operator.

View Article and Find Full Text PDF