Publications by authors named "Paul Henke"

Background: Despite advances in total knee arthroplasty, many patients are still unsatisfied with the functional outcome. Multibody simulations enable a more efficient exploration of independent variables compared to experimental studies. However, to what extent numerical models can fully reproduce knee joint kinematics is still unclear.

View Article and Find Full Text PDF

Aseptic implant loosening after a total joint replacement is partially influenced by material-specific factors when cobalt-chromium alloys are used, including osteolysis induced by wear and corrosion products and stress shielding. Here, we aim to characterize a hybrid material consisting of alumina-toughened zirconia (ATZ) ceramics and additively manufactured Ti-35Nb-6Ta (TiNbTa) alloys, which are joined by a glass solder. The structure of the joint, the static and fatigue shear strength, the influence of accelerated aging, and the cytotoxicity with human osteoblasts are characterized.

View Article and Find Full Text PDF

The AMTI VIVO™ six degree of freedom joint simulator allows reproducible preclinical testing of joint endoprostheses under specific kinematic and loading conditions. When testing total knee endoprosthesis, the articulating femoral and tibial components are each mounted on an actuator with two and four degrees of freedom, respectively. To approximate realistic physiological conditions with respect to soft tissues, the joint simulator features an integrated virtual ligament model that calculates the restoring forces of the ligament apparatus to be applied by the actuators.

View Article and Find Full Text PDF

In biomechanical research, advanced joint simulators such as VIVO offer the ability to test artificial joints under realistic kinematics and load conditions. Furthermore, it promises to simplify testing with advanced control approaches and the ability to include virtual ligaments. However, the overall functionality concerning specific test setup conditions, such as the joint lubrication or control algorithm, has not been investigated in-depth so far.

View Article and Find Full Text PDF

Hip resurfacing arthroplasty is associated with increased frictional moments compared to standard heads owing to their large diameter. High frictional moments may harbor the risk of the implant loosening if the frictional moments exceed the fixation stability of the hip resurfacing arthroplasty. Therefore, the aim of this experimental study was to evaluate the fixation stability of ceramic hip resurfacing implants through a turn-off test.

View Article and Find Full Text PDF

How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg(2+) screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs.

View Article and Find Full Text PDF

The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg(2+) that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique.

View Article and Find Full Text PDF

We present an implicit ion model fo the calculation of the electrostatic free energies of RNA conformations in the presence of divalent counterions such as Mg(2+). The model was applied to the native and several non-native structures of the hammerhead ribozyme and the group I intron in Tetrahymena to study the stability of candidate unfolding intermediates. Based on a rigorous statistical mechanical treatment of the counterions that are closely associated with the RNA while handling the rest of the ions in the solution via a mean field theory in the Grand Canonical ensemble, the implicit ion model accurately reproduces the ordering of their free energies, correctly identifying the native fold as the most stable structure out of the other alternatives.

View Article and Find Full Text PDF