There is a need to develop a universal vaccine against influenza virus infection to avoid developing new formulations of a seasonal vaccine each year. Many of the vaccine strategies for a universal vaccine target strain-conserved influenza virus proteins, such as the matrix, polymerase, and nucleoproteins, rather than the surface hemagglutinin and neuraminidase proteins. In addition, non-disease-causing viral vectors are a popular choice as a delivery system for the influenza virus antigens.
View Article and Find Full Text PDFAttenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response.
View Article and Find Full Text PDFThe coronavirus nucleocapsid (N) protein is a viral RNA-binding protein with multiple functions in terms of virus replication and modulating cell signalling pathways. N protein is composed of three distinct regions containing RNA-binding motif(s), and appropriate signals for modulating cell signalling. The subcellular localization of severe acute respiratory syndrome coronavirus (SARS-CoV) N protein was studied.
View Article and Find Full Text PDFSevere acute respiratory syndrome (SARS) coronavirus (SCoV) spike (S) protein is the major surface antigen of the virus and is responsible for receptor binding and the generation of neutralizing antibody. To investigate SCoV S protein, full-length and individual domains of S protein were expressed on the surface of insect cells and were characterized for cleavability and reactivity with serum samples obtained from patients during the convalescent phase of SARS. S protein could be cleaved by exogenous trypsin but not by coexpressed furin, suggesting that the protein is not normally processed during infection.
View Article and Find Full Text PDFIn mice, vaccines inducing antibodies to the extracellular domain of the M2 protein (M2e) can confer protection to influenza A virus infection. Unlike the surface glycoproteins, haemagglutinin and neuraminidase, this domain of M2 is highly conserved and is therefore a potential broad-spectrum immunogen. In this study, the protection conferred by vaccines inducing antibodies to M2e was evaluated in a challenge model for swine influenza in pigs.
View Article and Find Full Text PDFThe level of heterosubtypic immunity (Het-I) and the immune mechanisms stimulated by a heterosubtypic influenza virus infection were investigated in pigs. Pigs are natural hosts for influenza virus and, like humans, they host both subtypes H1N1 and H3N2. Marked Het-I was observed when pigs were infected with H1N1 and subsequently challenged with H3N2.
View Article and Find Full Text PDF