Publications by authors named "Paul Hargrave"

Description Cardiopulmonary bypass (CPB) is frequently used for open heart surgery and other procedures that utilize temporary substitution or support of heart and lung function. While it is widely accepted as the predominant method to carry out these procedures, it is not without possible complications. CPB can be seen as the ultimate "team sport" as it includes and is dependent on contributions from multiple professionals including anesthesiologists, cardiothoracic surgeons, and perfusion technicians.

View Article and Find Full Text PDF

Rhodopsin is a G-protein-coupled receptor (GPCR) that is the light detector in the rod cells of the eye. Rhodopsin is the best understood member of the large GPCR superfamily and is the only GPCR for which atomic resolution structures have been determined. However, these structures are for the inactive, dark-adapted form.

View Article and Find Full Text PDF

The maintenance of photoreceptor cell polarity is compromised by the rhodopsin mutations causing the human disease autosomal dominant retinitis pigmentosa. The severe form mutations occur in the C-terminal sorting signal of rhodopsin, VXPX-COOH. Here, we report that this sorting motif binds specifically to the small GTPase ARF4, a member of the ARF family of membrane budding and protein sorting regulators.

View Article and Find Full Text PDF

Rhodopsin, the pigment protein responsible for dim-light vision, is a G protein-coupled receptor that converts light absorption into the activation of a G protein, transducin, to initiate the visual response. We have crystallised detergent-solubilised bovine rhodopsin in the native form and after chemical modifications as needles 10-40 microm in cross-section. The crystals belong to the trigonal space group P3(1), with two molecules of rhodopsin per asymmetric unit, related by a non-crystallographic 2-fold axis parallel with the crystallographic screw axis along c (needle axis).

View Article and Find Full Text PDF

Phosphorylation of activated G-protein-coupled receptors and the subsequent binding of arrestin mark major molecular events of homologous desensitization. In the visual system, interactions between arrestin and the phosphorylated rhodopsin are pivotal for proper termination of visual signals. By using high resolution proton nuclear magnetic resonance spectroscopy of the phosphorylated C terminus of rhodopsin, represented by a synthetic 7-phosphopolypeptide, we show that the arrestin-bound conformation is a well ordered helix-loop structure connected to rhodopsin via a flexible linker.

View Article and Find Full Text PDF

Visual arrestin binds to the phosphorylated carboxy-terminal region of rhodopsin to block interactions with transducin and terminate signaling in the rod photoreceptor cells. A synthetic seven-phospho-peptide from the C-terminal region of rhodopsin, Rh(330-348), has been shown to bind arrestin and mimic inhibition of signal transduction. In this study, we examine conformational changes in this synthetic peptide upon binding to arrestin by high-resolution proton nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

Rhodopsin is the best-understood member of the large G protein-coupled receptor (GPCR) superfamily. The G-protein amplification cascade is triggered by poorly understood light-induced conformational changes in rhodopsin that are homologous to changes caused by agonists in other GPCRs. We have applied the "antibody imprint" method to light-activated rhodopsin in native membranes by using nine monoclonal antibodies (mAbs) against aqueous faces of rhodopsin.

View Article and Find Full Text PDF

Experimental autoimmune uveitis (EAU) is a disease of the neural retina induced by immunization with retinal antigens, such as interphotoreceptor retinoid-binding protein (IRBP) and arrestin (retinal soluble antigen, S-Ag). EAU serves as a model for human autoimmune uveitic diseases associated with major histocompatibility complex (HLA) genes, in which patients exhibit immunological responses to retinal antigens. Here we report the development of a humanized EAU model in HLA transgenic (TG) mice.

View Article and Find Full Text PDF

Subcellular translocation of phototransduction proteins in response to light has previously been detected by immunocytochemistry. This movement is consistent with the hypothesis that migration is part of a basic cellular mechanism regulating photoreceptor sensitivity. In order to monitor the putative migration of arrestin in response to light, we expressed a functional fusion between the signal transduction protein arrestin and green fluorescent protein (GFP) in rod photoreceptors of transgenic Xenopus laevis.

View Article and Find Full Text PDF

Lewis rats immunized with myelin basic protein (MBP) developed experimental autoimmune encephalomyelitis (EAE) and associated anterior uveitis (AU). Although several cryptic epitopes of MBP have strong encephalitogenic and uveitogenic properties, the peptide corresponding to the MBP residues 1-20 was uniquely capable of inducing AU without EAE. In this study, we showed that acetylation of the N-terminal amino acid did not produce encephalitogenicity, did not enhance uveitogenicity, and did not improve T cell proliferation in Lewis rats.

View Article and Find Full Text PDF

Visual arrestin is converted from a 'basal' state to an 'activated' state by interaction with the phosphorylated C-terminus of photoactivated rhodopsin (R*), but the conformational changes in arrestin that lead to activation are unknown. Small-angle X-ray scattering (SAXS) was used to investigate the solution structure of arrestin and characterize changes attendant upon activation. Wild-type arrestin forms dimers with a dissociation constant of 60 micro m.

View Article and Find Full Text PDF

Visual arrestin inactivates the phototransduction cascade by specifically binding to light-activated phosphorylated rhodopsin. This study describes the combined use of insertional mutagenesis and immunochemical approaches to probe the structural determinants of arrestin function. Recombinant arrestins with insertions of a 10-amino acid c-Myc tag (EQKLISEEDL) were expressed in yeast and characterized.

View Article and Find Full Text PDF