We exploit a time-resolved ultrafast optical technique to study the propagation of point-excited surface acoustic waves on a microscopic two-dimensional phononic crystal in the form of a square lattice of holes in a silicon substrate. Constant-frequency images and the dispersion relation are extracted, and the latter measured in detail in the region around the phononic band gap. Mode conversion and refraction at the interface between the phononic crystal and surrounding non-structured silicon substrate is studied at constant frequencies.
View Article and Find Full Text PDFHigh-frequency surface phonons have a myriad of applications in telecommunications and sensing, but their generation and detection have often been limited to transducers occupying micron-scale regions because of the use of two-dimensional transducer arrays. Here, by means of transient reflection spectroscopy we experimentally demonstrate optically coupled nanolocalized gigahertz surface phonon transduction based on a gold nanowire emitter arranged parallel to linear gold nanorod receiver arrays, that is, quasi-one-dimensional emitter-receivers. We investigate the response up to 10 GHz of these individual optoacoustic and acousto-optic transducers, respectively, by exploiting plasmon-polariton longitudinal resonances of the nanorods.
View Article and Find Full Text PDFZero-group-velocity (ZGV) waves have the peculiarity of being stationary, and thus locally confining energy. Although they are particularly useful in evaluation applications, they have not yet been tracked in two dimensions. Here we image gigahertz zero-group-velocity Lamb waves in the time domain by means of an ultrafast optical technique, revealing their stationary nature and their acoustic energy localization.
View Article and Find Full Text PDFExtraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk.
View Article and Find Full Text PDFBy means of an ultrafast optical technique, we track focused gigahertz coherent phonon pulses in objects down to sub-micron in size. Infrared light pulses illuminating the surface of a single metal-coated silica fibre generate longitudinal-phonon wave packets. Reflection of visible probe light pulses from the fibre surface allows the vibrational modes of the fibre to be detected, and Brillouin optical scattering of partially transmitted light pulses allows the acoustic wavefronts inside the transparent fibre to be continuously monitored.
View Article and Find Full Text PDFUsing an ultrafast optical technique with enhanced frequency control, we image surface-acoustic whispering-gallery-like modes in a microscopic disk at various frequencies up to 1 gigahertz (GHz), allowing experimental determination of their dispersion. This is made possible by intensity-modulated optical pumping and probing with a periodic femtosecond light source. Spatiotemporal Fourier transforms of the two-dimensional acoustic fields measured to micron resolution allow us to isolate individual whispering-gallery modes of first and second radial order as well as their mode patterns and Q factors to unprecedented frequency resolution.
View Article and Find Full Text PDF