Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s.
View Article and Find Full Text PDF1,4-Dioxane has been identified as a probable human carcinogen and an emerging contaminant in drinking water. The United States Environmental Protection Agency's (U.S.
View Article and Find Full Text PDFA drinking water method for perfluoroalkyl acids (PFAAs) is presented that addresses the occurrence monitoring needs of the U.S. Environmental Protection Agency (EPA) for a future unregulated contaminant monitoring regulation (UCMR).
View Article and Find Full Text PDF