To investigate nitrogen (N) cycling in oyster reef habitats along the East coast of Australia, we assessed N-cycling gene abundances in oyster shell biofilms and surrounding sediments, and explored their correlation with environmental factors and respective N rates. We found higher abundances of the denitrification gene nosZII in oyster shell biofilms, while there were not significant differences in the denitrification genes nirS and nirK between oyster biofilms and sediments. Additionally, oyster shell biofilms had a lower (nirS + nirK)/nosZII ratio, indicating a greater capacity for N removal and limited nitrous oxide release compared to sediments.
View Article and Find Full Text PDFBioturbation in coastal sediments plays a crucial role in biogeochemical cycling. However, a key knowledge gap is the extent to which bioturbation influences bacterial community diversity and ecosystem processes, such as nitrogen cycling. This study paired bacterial diversity, bioturbation activity and in situ flux measurements of oxygen and nitrogen from bioturbated sediments at six estuaries along the East coast of Australia.
View Article and Find Full Text PDFUnderstanding how habitat attributes (e.g., patch area and sizes, connectivity) control recruitment and how this is modified by processes operating at larger spatial scales is fundamental to understanding population sustainability and developing successful long-term restoration strategies for marine foundation species-including for globally threatened reef-forming oysters.
View Article and Find Full Text PDFHabitat-forming organisms provide three-dimensional structure that supports abundant and diverse communities. Variation in the morphological traits of habitat formers will therefore likely influence how they facilitate associated communities, either via food and habitat provisioning, or by altering predator-prey interactions. These mechanisms, however, are typically studied in isolation, and thus, we know little of how they interact to affect associated communities.
View Article and Find Full Text PDFEutrophication is a worldwide issue that can disrupt ecosystem processes in sediments. Studies have shown that macrofauna influences sediment processes by engineering environments that constrain microbial communities. Here, we explored the effect of different sizes of the Sydney cockle (Anadara trapezia), on bacterial and archaeal communities in natural and experimentally enriched sediments.
View Article and Find Full Text PDFOyster reefs play a crucial role in the removal of nitrogen (N) from aquatic systems by facilitating nutrient regeneration and denitrification, both in their tissues and shells and surrounding sediments. However, we still have a limited understanding about the contribution of each component of the reefs (e.g.
View Article and Find Full Text PDFMicrobes are sensitive indicators of estuarine processes because they respond rapidly to dynamic disturbance events. As most of the world's population lives in urban areas and climate change-related disturbance events are becoming more frequent, estuaries bounded by cities are experiencing increasing stressors, at the same time that their ecosystem services are required more than ever. Here, using a multidisciplinary approach, we determined the response of planktonic microbial assemblages in response to seasonality and a rainfall disturbance in an urban estuary bounded by Australia's largest city, Sydney.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
February 2023
Non-indigenous species (NIS) and hypoxia (<2 mg O l ) can disturb and restructure aquatic communities. Both are heavily influenced by human activities and are intensifying with global change. As these disturbances increase, understanding how they interact to affect native species and systems is essential.
View Article and Find Full Text PDFHabitat heterogeneity is considered a primary causal driver underpinning patterns of diversity, yet the universal role of heterogeneity in structuring biodiversity is unclear due to a lack of coordinated experiments testing its effects across geographic scales and habitat types. Furthermore, key species interactions that can enhance heterogeneity, such as facilitation cascades of foundation species, have been largely overlooked in general biodiversity models. Here, we performed 22 geographically distributed experiments in different ecosystems and biogeographical regions to assess the extent to which variation in biodiversity is explained by three axes of habitat heterogeneity: the amount of habitat, its morphological complexity, and capacity to provide ecological resources (e.
View Article and Find Full Text PDFCoastal systems such as estuaries are threatened by multiple anthropogenic stressors worldwide. However, how these stressors and estuarine hydrology shape benthic bacterial communities and their functions remains poorly known. Here, we surveyed sediment bacterial communities in poorly flushed embayments and well flushed channels in Sydney Harbour, Australia, using 16S rRNA gene sequencing.
View Article and Find Full Text PDFMultiple anthropogenic stressors are causing a global decline in foundation species, including macrophytes, often resulting in the expansion of functionally different, more stressor-tolerant macrophytes. Previously subdominant species may experience further positive demographic feedback if they are exposed to weaker plant-herbivore interactions, possibly via decreased palatability or being structurally different from the species they are replacing. However, the consequences of the spread of opportunistic macrophytes for the local distribution and life history of herbivores are unknown.
View Article and Find Full Text PDFGlobal patterns of plant biomass drive the distribution of much of the marine and terrestrial life on Earth. This is because their biomass and physical structure have important consequences for the communities they support by providing food and habitat. In terrestrial ecosystems, temperature is one of the major determinants of plant biomass and can influence plant and leaf morphology.
View Article and Find Full Text PDFEutrophication is an increasing problem worldwide and can disrupt ecosystem processes in which macrobenthic bioturbators play an essential role. This study explores how intraspecific variation in body size affects the survival, mobility and impact on sediment organic matter breakdown in enriched sediments of an infaunal bivalve. A mesocosm experiment was conducted in which monocultures and all size combinations of three body sizes (small, medium and large) of the Sydney cockle, Anadara trapezia, were exposed to natural or organically enriched sediments.
View Article and Find Full Text PDFData that can be used to monitor biodiversity through time are essential for conservation and management. The reef-forming worm, Sabellaria alveolata (L. 1767) is currently classed as 'Data Deficient' due to an imbalance in the spread of data on its distribution.
View Article and Find Full Text PDFAs habitat-forming species continue to decline globally, it is important to understand how associated communities respond to habitat loss and fragmentation. Changes in the density and spatial configuration of habitat have important consequences for associated communities. However, tests of these factors are often confounded by morphological variation of habitat-formers, which can be resolved by using standardised habitat-mimics.
View Article and Find Full Text PDFThe impacts invasive species have on biodiversity and ecosystem function globally have been linked to the higher abundances they often obtain in their introduced compared to native ranges. Higher abundances of invaders in the introduced range are often explained by a reduction in negative species interactions in that range, although results are equivocal. The role of positive interactions in explaining differences in the abundance of invaders between native and invasive ranges has not been tested.
View Article and Find Full Text PDFNative habitat-forming species can facilitate invasion by reducing environmental stress or consumer pressure. However, the intensity of one stressor along a local gradient may differ when expanding the scale of observation to encompass major variations in background environmental conditions. In this study, we determined how facilitation of the invasive porcelain crab, Petrolisthes elongatus, by the native tube-forming serpulid, Galeolaria caespitosa, varied with environmental gradients at local (tidal height) and larger (wave exposure) spatial scales.
View Article and Find Full Text PDFUnderstanding how species' traits can shape winners and losers of environmental change can help resolve drivers of current community composition patterns and predict future drivers. Sedimentation is one of the main environmental stressors shaping coastal marine communities and tolerance of high sedimentation rates (e.g.
View Article and Find Full Text PDFHuman activities introduce significant contamination into aquatic systems that impact biodiversity and ecosystem function. Many contaminants accumulate, and remediation options are now required worldwide. One method for bioremediation involves the application of macrofauna to stimulate microbial ecosystem processes including contaminant removal.
View Article and Find Full Text PDFThe previously sub-dominant native marine macrophyte Caulerpa filiformis is now dominant on many sub-tidal rocky reefs in New South Wales (NSW), Australia and is expanding its distribution. As C. filiformis is highly chemically defended and structurally different to co-occurring habitat-forming macrophytes, two key attributes that govern fish assemblages, we hypothesized that fish assemblages, particularly herbivorous fishes, would be different at sites where C.
View Article and Find Full Text PDFIt has long been recognized that primary foundation species (FS), such as trees and seagrasses, enhance biodiversity. Among the species facilitated are secondary FS, including mistletoes and epiphytes. Case studies have demonstrated that secondary FS can further modify habitat-associated organisms ('inhabitants'), but their net effects remain unknown.
View Article and Find Full Text PDFInvasion success is regulated by multiple factors. While the roles of disturbance and propagule pressure in regulating the establishment of non-native species are widely acknowledged, that of propagule morphology (a proxy for quality) is poorly known. By means of a multi-factorial field experiment, we tested how the number (5 vs.
View Article and Find Full Text PDFThere are many examples of native macrophytes becoming locally dominant and spreading outside their traditional distributions, but the causes and impacts are often not understood. In New South Wales, Australia, the green alga Caulerpa filiformis is undergoing a range expansion and has transitioned from a subdominant to a dominant alga on several rocky shores around the Sydney coastline. Here we investigated relationships between established patches of C.
View Article and Find Full Text PDF