Oral factor XIa (FXIa) inhibitors may provide a promising new antithrombotic therapy with an improved benefit to bleeding risk profile over existing antithrombotic agents. Herein, we report application of a previously disclosed cyclic carbamate P1 linker which provided improved oral bioavailability in the imidazole-based 13-membered macrocycle to the 12-membered macrocycle. This resulted in identification of compound with desired FXIa inhibitory potency and good oral bioavailability but high in vivo clearance.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2020
The discovery of orally bioavailable FXIa inhibitors has been a challenge. Herein, we describe our efforts to address this challenge by optimization of our imidazole-based macrocyclic series. Our optimization strategy focused on modifications to the P2 prime, macrocyclic amide linker, and the imidazole scaffold.
View Article and Find Full Text PDFObjective: The psychiatrist workforce has been identified as an area in need of development, especially in low- to middle-income countries. The purpose of this project is to assess the perceptions of Ghanaian medical students of a novel mental health inter-medical school speaking competition on career interest in psychiatry and mental health education and advocacy.
Methods: The study employed quantitative and qualitative methods in a cross-sectional design.
The synthesis, structural activity relationships (SAR), and selectivity profile of a potent series of phenylalanine diamide FXIa inhibitors will be discussed. Exploration of P1 prime and P2 prime groups led to the discovery of compounds with high FXIa affinity, good potency in our clotting assay (aPPT), and high selectivity against a panel of relevant serine proteases as exemplified by compound 21. Compound 21 demonstrated good in vivo efficacy (EC50=2.
View Article and Find Full Text PDFStructure-activity relationship optimization of phenylalanine P1' and P2' regions with a phenylimidazole core resulted in a series of potent FXIa inhibitors. Introducing 4-hydroxyquinolin-2-one as the P2' group enhanced FXIa affinity and metabolic stability. Incorporation of an N-methyl piperazine amide group to replace the phenylalanine improved both FXIa potency and aqueous solubility.
View Article and Find Full Text PDFMutations in the gene for leucine-rich repeat kinase 2 (LRRK2) have been linked to several familial and sporadic late-onset cases of Parkinson's disease. The cumulative data for the effects of mutant forms of this enzyme on neuronal degradation and the pathophysiology of Parkinson's disease create a compelling case for drug discovery based on inhibition of the mutant forms of LRRK2. This review focuses on structure-activity relationships for inhibitors of LRRK2 and the data supporting a potential role of these agents in treating Parkinson's disease.
View Article and Find Full Text PDFPyrido[3,2-b]pyrazin-3(4H)-ones and pteridin-7(8H)-ones were evaluated as corticotropin-releasing factor-1 receptor antagonists. The synthesis, SAR studies and pharmacokinetic evaluation of these analogs are described herein.
View Article and Find Full Text PDFThis report describes the syntheses and structure-activity relationships of 8-(4-methoxyphenyl)pyrazolo[1,5-a]-1,3,5-triazine corticotropin releasing factor receptor-1 (CRF(1)) receptor antagonists. CRF(1) receptor antagonists may be potential anxiolytic or antidepressant drugs. This research culminated in the discovery of analogue 12-3, which is a potent, selective CRF(1) antagonist (hCRF(1) IC(50) = 4.
View Article and Find Full Text PDFThis report describes the syntheses and structure-activity relationships of 8-(substituted pyridyl)pyrazolo[1,5-a]-1,3,5-triazine corticotropin releasing factor receptor-1 (CRF(1)) receptor antagonists. These CRF(1) receptor antagonists may be potential anxiolytic or antidepressant drugs. This research resulted in the discovery of compound 13-15, which is a potent, selective CRF(1) antagonist (hCRF(1) IC(50) = 6.
View Article and Find Full Text PDFThe CRF antagonist pharmacophore is a heterocyclic ring bearing a critical hydrogen-bond acceptor nitrogen and an orthogonal aromatic ring. CRFR1 antagonists have shown a 40-fold and 200-fold loss in potency against the CRFR1 H199V and M276I mutant receptors, suggesting key interactions with these residues. We have derived a two component computational model that correlates CRFR1 binding affinity within the reported series to antagoinst/H199 complexation energy and M276 hydrophobic contacts.
View Article and Find Full Text PDFCorticotropin-releasing factor (CRF) coordinates the neural, endocrine and immune responses of the body to stress. Therefore, CRF receptors are important targets for the design of drugs for depression, anxiety and stress-related disorders. Several laboratories have published extensive preclinical and limited clinical research into the role of CRF in human disease.
View Article and Find Full Text PDFA novel series of 2-anilino-3-phenylsulfonyl-6-methylpyridines was synthesized and evaluated as corticotropin-releasing factor receptor ligands. Structure-activity relationship studies focused primarily on optimization of the 3-phenylsulfonyl group. Compounds within this series were identified which showed potent binding affinity for the CRF1 receptor.
View Article and Find Full Text PDFLife-history theory and evolutionary theories of aging assume the existence of alleles with age-specific effects on fitness. While various studies have documented age-related changes in the genetic contribution to variation in fitness components, we know very little about the underlying genetic architecture of such changes. We used a set of recombinant inbred lines to map and characterize the effects of quantitative trait loci (QTL) affecting fecundity of Drosophila melanogaster females at 1 and 4 weeks of age.
View Article and Find Full Text PDFCRF(1) antagonists DMP696 and DMP904 were designed as drug development candidates for the treatment of anxiety and depression. Both compounds display nanomolar affinity for human CRF(1) receptors, and exhibit >1000-fold selectivity for CRF(1) over CRF(2) receptors and over a broad panel of other proteins. DMP696 and DMP904 block CRF-stimulated adenylyl cyclase activity in cortical homogenates and cell-lines expressing CRF(1) receptors.
View Article and Find Full Text PDFRationale: Benzodiazepines continue to be widely used for the treatment of anxiety, but it is well known that benzodiazepines have undesirable side effects, including sedation, ataxia, cognitive deficits and the risk of addiction and abuse. CRF(1) receptor antagonists are being developed as potential novel anxiolytics, but while CRF(1) receptor antagonists seem to have a better side-effect profile than benzodiazepines with respect to sedation and ataxia, the effects of CRF(1) receptor antagonists on cognitive function have not been well characterized. It is somewhat surprising that the potential cognitive effects of CRF(1) receptor antagonists have not been more fully characterized since there is some evidence to suggest that these compounds may impair cognitive function.
View Article and Find Full Text PDFCorticotropin releasing factor (CRF) is the primary regulator of the hypothalamus-pituitary-adrenal (HPA) axis, coordinating the endocrine, behavioral, and autonomic responses to stress. It has been postulated that small molecules that can antagonize the binding of CRF1 to its receptor may serve as a treatment for anxiety-related and/or affective disorders. Members within a series of 3,4-dihydro-1H-pyrido[2,3-b]pyrazin-2-ones, exemplified by compound 2 (IC50 = 0.
View Article and Find Full Text PDFA growing body of evidence suggests that CRF(1) receptor antagonism offers considerable therapeutic potential in the treatment of diseases resulting from elevated levels of CRF, such as anxiety and depression. A series of novel 1,2,3,7-tetrahydro-6H-purin-6-one and 3,7-dihydro-1H-purine-2,6-dione derivatives was synthesized and evaluated as corticotropin releasing factor-1 (CRF(1)) receptor antagonists. Compounds within this series, represented by compound 12d (IC(50) = 5.
View Article and Find Full Text PDFCurr Opin Drug Discov Devel
July 2004
Corticotropin-releasing factor (CRF) co-ordinates the neural, endocrine and immune responses of the body to stress. Several studies have implicated CRF in the etiology of anxiety, depression, substance abuse, stress-related gastrointestinal disorders and preterm labor, and intensive research into the design of safe and effective CRF antagonists is currently being pursued in several laboratories. Recently, improvements have been made not only in brain penetrance and in vivo activity in preclinical models for anxiety, depression and irritable bowel syndrome, but also in structural diversity for these compounds.
View Article and Find Full Text PDFCorticotropin-releasing factor(1) (CRF(1)) antagonists may be effective in the treatment of anxiety disorders with fewer side effects compared with classic benzodiazepines. The behavioral effects of DMP904 [4-(3-pentylamino)-2,7-dimethyl-8-(2-methyl-4-methoxyphenyl)-pyrazolo-[1,5-a]-pyrimidine] and its effects on the hypothalamic-pituitary-adrenal (HPA) axis were related to its levels in plasma and estimated occupancy of central CRF(1) receptors. DMP904 (10-30 mg/kg, p.
View Article and Find Full Text PDFThe syntheses and rat CRF receptor binding affinities of 'retro-pyrazolotriazine' corticotropin-releasing factor (CRF) ligands 4 are reported. Some have high affinity for rat CRF receptors (K(i)< or =10 nM). The data provide additional support for the hypothesis that it is possible to interchange isosteric cores with similar electronic properties in the design of high-affinity CRF receptor ligands, provided the peripheral pharmacophore elements are maintained in the same three-dimensional array.
View Article and Find Full Text PDF4-(1,3-Dimethoxyprop-2-ylamine)-2,7-dimethyl-8-(2,4-dichlorophenyl)-pyrazolo[1,5-a]-1,3,5-triazine (DMP696) is a highly selective and potent, nonpeptide corticotropin-releasing factor 1 (CRF(1)) antagonist. In this study, we measured in vivo CRF(1) receptor occupancy of DMP696 by using ex vivo ligand binding and quantitative autoradiography and explored the relationship of receptor occupancy with plasma and brain exposure and behavioral efficacy. In vitro affinity (IC(50)) of DMP696 to brain CRF(1) receptors measured using the brain section binding autoradiography in this study is similar to that assessed using homogenized cell membrane assays previously.
View Article and Find Full Text PDFThe in vitro pharmacological profile of a novel small molecule corticotropin-releasing factor 1 (CRF(1)) receptor antagonist, (+/-)-N-[2-methyl-4-methoxyphenyl]-1-(1-(methoxymethyl)propyl)-6-methyl-1H-1,2,3-triazolo[4,5-c]pyridin-4-amine (SN003), and the characteristics of its radioligand ([(3)H]SN003) are described. SN003 has high affinity and selectivity for CRF(1) receptors expressed in rat cortex, pituitary, and recombinant HEK293EBNA (HEK293e) cells with respective radiolabeled ovine CRF ([(125)I]oCRF) binding K(i) values of 2.5, 7.
View Article and Find Full Text PDFA series of imidazo[4,5-b]pyridines with a 7-(3-pyridyl) substituent is described as high affinity CRF receptor ligands. Individual analogues were synthesized from key intermediates obtained via palladium-catalyzed coupling of 3-pyridyl zinc or boronic acid organometallic intermediates with 2-benzyloxy-4-chloro-3-nitropyridine 12.
View Article and Find Full Text PDFRationale: CRF(1) antagonists may be effective in the treatment of anxiety disorders while having fewer side effects compared with classical benzodiazepines.
Objectives: The effects of a small molecule selective CRF(1) antagonist DMP696 on anxiety-like behaviors and stress-induced increases in corticosterone in rats exposed to a novel environment and on locomotor activity and motor coordination were determined in rats. These effects of DMP696 were compared with those produced by the classical benzodiazepine chlordiazepoxide (CDP).