Publications by authors named "Paul Gershon"

The influence of neoplastic cells on the tumor microenvironment is poorly understood. In this study, eight patient samples representing two immunotypes of triple-negative breast cancer (TNBC), defined by quantitative histologic criteria as T-cell desert and T-cell infiltrated (TCI), were compared via label-free quantitative protein mass spectrometry of material extracted directly from targeted regions of formalin-fixed, paraffin-embedded tissue sections. Of 2934 proteins quantitated, 439 were significantly differentially abundant, among which 361 were overabundant in TCI-TNBC.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) resemble the pluripotent epiblast cells found in the early postimplantation human embryo and represent the "primed" state of pluripotency. One factor that helps primed pluripotent cells retain pluripotency and prepare genes for differentiation is the transcription factor TCF7L1, a member of a small family of proteins known as T cell factors/Lymphoid enhancer factors (TCF/LEF) that act as downstream components of the WNT signaling pathway. Transcriptional output of the WNT pathway is regulated, in part, by the activity of TCF/LEFs in conjunction with another component of the WNT pathway, β-CATENIN.

View Article and Find Full Text PDF

An outstanding problem in the understanding of poxvirus biology is the molecular structure of the mature virion. Via deep learning methods combined with chemical cross-linking mass spectrometry, we have addressed the structure and assembly pathway of P4a, a key poxvirus virion core component.

View Article and Find Full Text PDF

Background: Autologous fat grafting is commonly used for soft-tissue repair (approximately 90,000 cases per year in the United States), but outcomes are limited by volume loss (20% to 80%) over time. Human allograft adipose matrix (AAM) stimulates de novo adipogenesis in vivo, but retention requires optimization. The extracellular matrix derived from superficial fascia, interstitial within the adipose layer, is typically removed during AAM processing.

View Article and Find Full Text PDF

The auditory brainstem relies on precise circuitry to facilitate sound source localization. In the chick, the development of this specialized circuitry requires non-apoptotic activity of caspase-3, for which we previously identified several hundred proteolytic substrates. Here we tested whether the sequence of the caspase cleavage site differentially encodes proteolytic preference in apoptotic and non-apoptotic contexts.

View Article and Find Full Text PDF

Sound localization requires extremely precise development of auditory brainstem circuits, the molecular mechanisms of which are largely unknown. We previously demonstrated a novel requirement for non-apoptotic activity of the protease caspase-3 in chick auditory brainstem development. Here, we used mass spectrometry to identify proteolytic substrates of caspase-3 during chick auditory brainstem development.

View Article and Find Full Text PDF

The goal of this study was to determine if exosomes, isolated from infected HeLa cells (-exosomes), induce protective immune responses in mice following vaccination using CpG plus Montanide as adjuvants. Exosomes, collected from uninfected HeLa cells and PBS, formulated with the same adjuvants, were used as negative controls. Mass spectrometry analyses identified 113 proteins in the -exosome preparation including the major outer membrane protein and the polymorphic membrane proteins.

View Article and Find Full Text PDF

We conducted an exhaustive search for three-dimensional structural homologs to the proteins of 20 key phylogenetically distinct nucleocytoplasmic DNA viruses (NCLDV). Structural matches covered 429 known protein domain superfamilies, with the most highly represented being ankyrin repeat, P-loop NTPase, F-box, protein kinase, and membrane occupation and recognition nexus (MORN) repeat. Domain superfamily diversity correlated with genome size, but a diversity of around 200 superfamilies appeared to correlate with an abrupt switch to paralogization.

View Article and Find Full Text PDF

C1q plays a key role as a recognition molecule in the immune system, driving autocatalytic complement cascade activation and acting as an opsonin. We have previously reported a non-immune role of complement C1q modulating the migration and fate of human neural stem cells (hNSC); however, the mechanism underlying these effects has not yet been identified. Here, we show for the first time that C1q acts as a functional hNSC ligand, inducing intracellular signaling to control cell behavior.

View Article and Find Full Text PDF

IFITs are interferon-induced proteins that can bind 5'-triphosphate or ribose-unmethylated capped ends of mRNA to inhibit translation. Although some viruses avoid IFITs by synthesizing RNAs with eukaryotic-like caps, no viral proteins were known to antagonize IFITs. We show that the N- and C-terminal portions of C9, a protein required for vaccinia virus to resist the human type I interferon-induced state, bind IFITs and ubiquitin regulatory complexes, respectively.

View Article and Find Full Text PDF

The mitochondrial and chloroplast mRNAs of the majority of land plants are modified through cytidine to uridine (C-to-U) RNA editing. Previously, forward and reverse genetic screens demonstrated a requirement for pentatricopeptide repeat (PPR) proteins for RNA editing. Moreover, chloroplast editing factors OZ1, RIP2, RIP9 and ORRM1 were identified in co-immunoprecipitation (co-IP) experiments, albeit the minimal complex sufficient for editing activity was never deduced.

View Article and Find Full Text PDF

We have investigated the molecular-level structure of the Vaccinia virion in situ by protein-protein chemical crosslinking, identifying 4609 unique-mass crosslink ions at an effective FDR of 0.33%, covering 2534 unique pairs of crosslinked protein positions, 625 of which were inter-protein. The data were statistically non-random and rational in the context of known structures, and showed biological rationality.

View Article and Find Full Text PDF

Protein production, genomic RNA replication, and virion assembly during infection by picornaviruses like human rhinovirus and poliovirus take place in the cytoplasm of infected human cells, making them the quintessential cytoplasmic pathogens. However, a growing body of evidence suggests that picornavirus replication is promoted by a number of host proteins localized normally within the host cell nucleus. To systematically identify such nuclear proteins, we focused on those that appear to re-equilibrate from the nucleus to the cytoplasm during infection of HeLa cells with human rhinovirus via quantitative protein mass spectrometry.

View Article and Find Full Text PDF

The past 17 years have been marked by a revolution in our understanding of cellular multisubunit DNA-dependent RNA polymerases (MSDDRPs) at the structural level. A parallel development over the past 15 years has been the emerging story of the giant viruses, which encode MSDDRPs. Here we link the two in an attempt to understand the specialization of multisubunit RNA polymerases in the domain of life encompassing the large nucleocytoplasmic DNA viruses (NCLDV), a superclade that includes the giant viruses and the biochemically well-characterized poxvirus vaccinia virus.

View Article and Find Full Text PDF
Article Synopsis
  • Extracellular matrix (ECM) is crucial for tissue function as it influences cell behavior through mechanical and biochemical signals, and changes in ECM can lead to cancer progression.
  • The study compared ECM extracted from normal human colon tissue and metastatic colon tumors, revealing differences in protein composition and stiffness, which affected vascular network formation and tumor growth.
  • By analyzing NADH levels in tumor and endothelial cells, the research showed that tumor ECM increases glycolytic activity in cancer cells, highlighting the ECM's significant role in cancer cell growth and vasculature development.
View Article and Find Full Text PDF

Because tumor cell motility is a requirement for metastasis, we hypothesized that lung tissue harbors substances that induce tumor cell migration. MCF-7 breast carcinoma cells exposed to small airway epithelial cells and conditioned medium exhibited dose-dependent tumor cell migration. Among the extracellular matrix proteins in the conditioned medium identified by mass spectrometry, laminin 332 (LM332) had the greatest contribution to the migration of MCF-7 cells.

View Article and Find Full Text PDF

Unlabelled: Here we examine the protein covalent structure of the vaccinia virus virion. Within two virion preparations, >88% of the theoretical vaccinia virus-encoded proteome was detected with high confidence, including the first detection of products from 27 open reading frames (ORFs) previously designated "predicted," "uncharacterized," "inferred," or "hypothetical" polypeptides containing as few as 39 amino acids (aa) and six proteins whose detection required nontryptic proteolysis. We also detected the expression of four short ORFs, each of which was located within an ORF ("ORF-within-ORF"), including one not previously recognized or known to be expressed.

View Article and Find Full Text PDF

Pluripotent stem cell-derived cardiomyocytes (CMs) have great potential in the development of new therapies for cardiovascular disease. In particular, human induced pluripotent stem cells (iPSCs) may prove especially advantageous due to their pluripotency, their self-renewal potential, and their ability to create patient-specific cell lines. Unfortunately, pluripotent stem cell-derived CMs are immature, with characteristics more closely resembling fetal CMs than adult CMs, and this immaturity has limited their use in drug screening and cell-based therapies.

View Article and Find Full Text PDF

Despite being intensely studied for more than 50 years, a complete understanding of the enterovirus replication cycle remains elusive. Specifically, only a handful of cellular proteins have been shown to be involved in the RNA replication cycle of these viruses. In an effort to isolate and identify additional cellular proteins that function in enteroviral RNA replication, we have generated multiple recombinant polioviruses containing RNA affinity tags within the 3' or 5' noncoding region of the genome.

View Article and Find Full Text PDF

Unlabelled: The Arenaviridae are enveloped, negative-sense RNA viruses with several family members that cause hemorrhagic fevers. This work provides immunofluorescence evidence that, unlike those of New World arenaviruses, the replication and transcription complexes (RTC) of lymphocytic choriomeningitis virus (LCMV) colocalize with eukaryotic initiation factor 4E (eIF4E) and that eIF4E may participate in the translation of LCMV mRNA. Additionally, we identify two residues in the LCMV nucleoprotein (NP) that are conserved in every mammalian arenavirus and are required for recombinant LCMV recovery.

View Article and Find Full Text PDF

Background: Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall.

View Article and Find Full Text PDF

Trypsin, Lys-C, and Lys-N are the most broadly used enzymes in proteomics. Here, on the basis of large-scale peptide mass spectrometry (MS) data sets, an approach is described to confidently identify missed cleavage sites in either phosphorylated or unmodified substrates for these three proteases, or any protease, on the basis of side chain species present within 15 residues of the cleavage-specificity residue. Previously known effects of proline, negatively charged side chains, and phospho-modified residues have been quantified, and additional side chain effects were noted.

View Article and Find Full Text PDF

Vaccinia virus poly(A) polymerase (VP55) is the only known polymerase that can translocate independently with respect to single-stranded nucleic acid (ssNA). Previously, its structure has only been solved in the context of the VP39 processivity factor. Here, a crystal structure of unliganded monomeric VP55 has been solved to 2.

View Article and Find Full Text PDF

Objective: Angiogenesis requires tightly coordinated crosstalk between endothelial cells (ECs) and stromal cells, such as fibroblasts and smooth muscle cells. The specific molecular mechanisms moderating this process are still poorly understood.

Methods And Results: Stromal cell-derived factors are essential for EC sprouting and lumen formation.

View Article and Find Full Text PDF

Unlabelled: Due to the limited coding capacity of picornavirus genomic RNAs, host RNA binding proteins play essential roles during viral translation and RNA replication. Here we describe experiments suggesting that AUF1, a host RNA binding protein involved in mRNA decay, plays a role in the infectious cycle of picornaviruses such as poliovirus and human rhinovirus. We observed cleavage of AUF1 during poliovirus or human rhinovirus infection, as well as interaction of this protein with the 5' noncoding regions of these viral genomes.

View Article and Find Full Text PDF