Integr Environ Assess Manag
September 2024
We present a novel method for detecting red tide (Karenia brevis) blooms off the west coast of Florida, driven by a neural network classifier that combines remote sensing data with spatiotemporally distributed in situ sample data. The network detects blooms over a 1-km grid, using seven ocean color features from the MODIS-Aqua satellite platform (2002-2021) and in situ sample data collected by the Florida Fish and Wildlife Conservation Commission and its partners. Model performance was demonstrably enhanced by two key innovations: depth normalization of satellite features and encoding of an in situ feature.
View Article and Find Full Text PDFNeurocomputing (Amst)
September 2021
Pathology tissue slides are taken as the gold standard for the diagnosis of most cancer diseases. Automatic pathology slide diagnosis is still a challenging task for researchers because of the high-resolution, significant morphological variation, and ambiguity between malignant and benign regions in whole slide images (WSIs). In this study, we introduce a general framework to automatically diagnose different types of WSIs via unit stochastic selection and attention fusion.
View Article and Find Full Text PDFComput Methods Programs Biomed
October 2020
Background And Objectives: The vast size of the histopathology whole slide image poses formidable challenges to its automatic diagnosis. With the goal of computer-aided diagnosis and the insights that suspicious regions are generally easy to identify in thyroid whole slide images (WSIs), we develop an interactive whole slide diagnostic system for thyroid frozen sections based on the suspicious regions preselected by pathologists.
Methods: We propose to generate feature representations for the suspicious regions via extracting and fusing patch features using deep neural networks.
Tree species classification using hyperspectral imagery is a challenging task due to the high spectral similarity between species and large intra-species variability. This paper proposes a solution using the Multiple Instance Adaptive Cosine Estimator (MI-ACE) algorithm. MI-ACE estimates a discriminative target signature to differentiate between a pair of tree species while accounting for label uncertainty.
View Article and Find Full Text PDFIEEE Trans Image Process
May 2018
Hyperspectral unmixing while considering endmember variability is usually performed by the normal compositional model, where the endmembers for each pixel are assumed to be sampled from unimodal Gaussian distributions. However, in real applications, the distribution of a material is often not Gaussian. In this paper, we use Gaussian mixture models (GMM) to represent endmember variability.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2016
The normal compositional model (NCM) has been extensively used in hyperspectral unmixing. However, previous research has mostly focused on estimation of endmembers and/or their variability, based on the assumption that the pixels are independent random variables. In this paper, we show that this assumption does not hold if all the pixels are generated by a fixed endmember set.
View Article and Find Full Text PDFIn this paper, we provide a comprehensive survey of the mixture of experts (ME). We discuss the fundamental models for regression and classification and also their training with the expectation-maximization algorithm. We follow the discussion with improvements to the ME model and focus particularly on the mixtures of Gaussian process experts.
View Article and Find Full Text PDFIEEE Trans Neural Netw
October 2009
During the 1990s Ritter, introduced a new family of associative memories based on lattice algebra instead of linear algebra. These memories provide unlimited storage capacity, unlike linear-correlation-based models. The canonical lattice-based memories, however, are susceptible to noise in the initial input data.
View Article and Find Full Text PDFPrincipal component analysis (PCA) is a mathematical method that reduces the dimensionality of the data while retaining most of the variation in the data. Although PCA has been applied in many areas successfully, it suffers from sensitivity to noise and is limited to linear principal components. The noise sensitivity problem comes from the least-squares measure used in PCA and the limitation to linear components originates from the fact that PCA uses an affine transform defined by eigenvectors of the covariance matrix and the mean of the data.
View Article and Find Full Text PDF