Publications by authors named "Paul G Winyard"

The pituitary gland produces and secretes a variety of hormones that are essential to life, such as for the regulation of growth and development, metabolism, reproduction, and the stress response. This is achieved through an intricate signalling interplay between the brain and peripheral feedback signals that shape pituitary cell excitability by regulating the ion channel properties of these cells. In addition, endocrine anterior pituitary cells spontaneously fire action potentials to regulate the intracellular calcium ([Ca]) level, an essential signalling conduit for hormonal secretion.

View Article and Find Full Text PDF

Drug-eluting stents are commonly utilized for the treatment of coronary artery disease, where they maintain vessel patency and prevent restenosis. However, problems with prolonged vascular healing, late thrombosis, and neoatherosclerosis persist; these could potentially be addressed via the local generation of nitric oxide (NO) from endogenous substrates. Herein, we develop amine-functionalized graphene as a NO-generating coating on polylactic acid (PLA)-based bioresorbable stent materials.

View Article and Find Full Text PDF

A central paradigm of cardiovascular homeostasis is that impaired nitric oxide (NO) bioavailability results in a wide array of cardiovascular dysfunction including incompetent endothelium-dependent vasodilatation, thrombosis, vascular inflammation, and proliferation of the intima. Over the course of more than a century, NO donating formulations such as organic nitrates and nitrites have remained a cornerstone of treatment for patients with cardiovascular diseases. These donors primarily produce NO in the circulation and are not targeted to specific (sub)cellular sites of action.

View Article and Find Full Text PDF
Article Synopsis
  • * The study aimed to understand the mechanisms of IAD better and investigate the role of urease-inhibiting treatments in preventing skin damage.
  • * Results showed that urease elevated skin pH and contributed to skin barrier breakdown, while the urease inhibitor acetohydroxamic acid (AHA) significantly reduced skin damage, suggesting potential therapeutic benefits for managing IAD.
View Article and Find Full Text PDF

Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous.

View Article and Find Full Text PDF

The addition of hydrogen peroxide (HO) to cultured cells is widely used as a method to modulate redox-regulated cellular pathways, including the induction of programmed cell death in cell culture experiments and the testing of pro- and antioxidant compounds. Here, we assessed the effect on the cellular response to HO of pre-adapting squamous cell carcinoma cells (A431) to the standard cell culture oxygenation of 18.6% O, compared to cells pre-adapted to a physiological skin O concentration (3.

View Article and Find Full Text PDF

Phenethyl isothiocyanate (PEITC) is a secondary metabolic product yielded upon the hydrolysis of gluconasturtiin and it is highly accumulated in the flowers of watercress. The aim of the current study was to assess the role of a naturally derived PEITC-enriched extract in the induction of oxidative stress and to evaluate its anti-melanoma potency through the regulation of its metabolism with the concurrent production of the -acetyl cysteine conjugated by-product. For this purpose, an in vitro melanoma model was utilized consisting of human primary (A375) cells as well as metastatic (COLO-679) malignant melanoma cells together with non-tumorigenic immortalized keratinocytes (HaCaT).

View Article and Find Full Text PDF

The nitrate (NO3-) reducing bacteria resident in the oral cavity have been implicated as key mediators of nitric oxide (NO) homeostasis and human health. NO3--reducing oral bacteria reduce inorganic dietary NO3- to nitrite (NO2-) via the NO3--NO2--NO pathway. Studies of oral NO3--reducing bacteria have typically sampled from either the tongue surface or saliva.

View Article and Find Full Text PDF

The aim of the current study was to (i) extract isolated fractions of watercress flowers enriched in polyphenols, phenethyl isothiocyanate and glucosinolates and (ii) characterize the anticancer mode of action of non-lethal, sub-lethal and lethal concentrations of the most potent extract fraction in primary (A375) and metastatic (COLO-679) melanoma cells as well as non-tumorigenic immortalized keratinocyte (HaCaT) cells. Cytotoxicity was assessed via the Alamar Blue assay, whereas ultrastructural alterations in mitochondria and the endoplasmic reticulum were determined via transmission electron microscopy. Mitochondrial membrane depolarization was determined using Mito-MP dye, whereas apoptosis was evaluated through the activation of caspases-3, -8 and -9.

View Article and Find Full Text PDF

Dietary nitrate (NO) supplementation can enhance nitric oxide (NO) bioavailability and lower blood pressure (BP) in humans. The nitrite concentration ([NO]) in the plasma is the most commonly used biomarker of increased NO availability. However, it is unknown to what extent changes in other NO congeners, such as S-nitrosothiols (RSNOs), and in other blood components, such as red blood cells (RBC), also contribute to the BP lowering effects of dietary NO.

View Article and Find Full Text PDF

In this review, current understanding of the prevention and treatment of Incontinence Associated Dermatitis (IAD) is discussed. The need for preventative measures which target specific faecal/urinary irritants is highlighted, including the role of urease inhibitors. There is no existing internationally and clinically accepted method to diagnose and categorise the severity of IAD.

View Article and Find Full Text PDF

This study tested the hypothesis that the increases in salivary and plasma [NO] after dietary NO supplementation would be greater when oral temperature and pH were independently elevated, and increased further when oral temperature and pH were elevated concurrently. Seven healthy males (mean ± SD, age 23 ± 4 years) ingested 70 mL of beetroot juice concentrate (BR, which provided ~6.2 mmol NO) during six separate laboratory visits.

View Article and Find Full Text PDF

Watercress () is a rich source of secondary metabolites with disease-preventing and/or health-promoting properties. Herein, we have utilized extraction procedures to isolate fractions of polyphenols, glucosinolates and isothiocyanates to determine their identification, and quantification. In doing so, we have utilized reproducible analytical methodologies based on liquid chromatography with tandem mass spectrometry by either positive or negative ion mode.

View Article and Find Full Text PDF

Aims/hypothesis: Antibodies specific to oxidative post-translational modifications (oxPTM) of insulin (oxPTM-INS) are present in most individuals with type 1 diabetes, even before the clinical onset. However, the antigenic determinants of such response are still unknown. In this study, we investigated the antibody response to oxPTM-INS neoepitope peptides (oxPTM-INSPs) and evaluated their ability to stimulate humoral and T cell responses in type 1 diabetes.

View Article and Find Full Text PDF

Watercress is an enriched source of phenethyl isothiocyanate (PEITC), among other phytochemicals, with an antioxidant capacity. The aim of this study was to (i) chemically characterize and () biologically evaluate the profile of the main health-promoting compounds contained in edible (i.e.

View Article and Find Full Text PDF

Ingested inorganic nitrate (NO⁻) has multiple effects in the human body including vasodilation, inhibition of platelet aggregation, and improved skeletal muscle function. The functional effects of oral NO⁻ involve the in vivo reduction of NO⁻ to nitrite (NO⁻) and thence to nitric oxide (NO). However, the potential involvement of S-nitrosothiol (RSNO) formation is unclear.

View Article and Find Full Text PDF

Many oral bacteria reduce inorganic nitrate, a natural part of a vegetable-rich diet, into nitrite that acts as a precursor to nitric oxide, a regulator of vascular tone and neurotransmission. Aging is hallmarked by reduced nitric oxide production with associated detriments to cardiovascular and cognitive function. This study applied a systems-level bacterial co-occurrence network analysis across 10-day dietary nitrate and placebo interventions to test the stability of relationships between physiological and cognitive traits and clusters of co-occurring oral bacteria in older people.

View Article and Find Full Text PDF

Overexpression and secretion of the enzymes cathepsin D (CathD) and cathepsin L (CathL) is associated with metastasis in several human cancers. As a superfamily, extracellularly, these proteins may act within the tumor microenvironment to drive cancer progression, proliferation, invasion and metastasis. Therefore, it is important to discover novel therapeutic treatment strategies to target CathD and CathL and potentially impede metastasis.

View Article and Find Full Text PDF

In vivo, mammalian cells reside in an environment of 0.5-10% O (depending on the tissue location within the body), whilst standard in vitro cell culture is carried out under room air. Little is known about the effects of this hyperoxic environment on treatment-induced oxidative stress, relative to a physiological oxygen environment.

View Article and Find Full Text PDF

Aim: Achieving reliably high production of reactive oxygen species (ROS) in photodynamic therapy (PDT) remains challenging. Graphene quantum dots (GQDs) hold great promise for PDT. However, the photochemical processes leading to GQD-derived ROS generation have not yet been fully elucidated.

View Article and Find Full Text PDF

The management of patients with autoimmune rheumatic diseases such as rheumatoid arthritis (RA) remains a significant challenge. Often the rheumatologist is restricted to treating and relieving the symptoms and consequences and not the underlying cause of the disease. Oxidative stress occurs in many autoimmune diseases, along with the excess production of reactive oxygen species (ROS) and reactive nitrogen species (RNS).

View Article and Find Full Text PDF

Imbalances in the oral microbial community have been associated with reduced cardiovascular and metabolic health. A possible mechanism linking the oral microbiota to health is the nitrate (NO)-nitrite (NO)-nitric oxide (NO) pathway, which relies on oral bacteria to reduce NO to NO. NO (generated from both NO and L-arginine) regulates vascular endothelial function and therefore blood pressure (BP).

View Article and Find Full Text PDF

Biomolecular fractions affect the fate and behaviour of quantum dots (QDs) in living systems but how the interactions between biomolecules and QDs affect the bioavailability of QDs is a major knowledge gap in risk assessment analysis. The transport of QDs after release into a living organism is a complex process. The majority accumulate in the lungs where they can directly affect the inhalation process and lung architecture.

View Article and Find Full Text PDF
Article Synopsis
  • The generation of 3-nitrotyrosine in proteins is a result of oxidative or nitrative stress, potentially serving as a biomarker for inflammatory diseases.
  • A new highly sensitive electrochemiluminescence-based ELISA for measuring nitrotyrosine has been developed, offering 50 times greater sensitivity than some existing tests and showing accuracy in quantifying levels in serum samples.
  • The ELISA was validated against mass spectrometry, and in a clinical study of surgical patients, it detected a significant increase in nitrotyrosine levels post-surgery, indicating it can effectively measure inflammatory responses.
View Article and Find Full Text PDF

A diet rich in vegetables is known to provide cardioprotection. However, it is unclear how the consumption of different vegetables might interact to influence vascular health. This study tested the hypothesis that nitrate-rich vegetable consumption would lower systolic blood pressure but that this effect would be abolished when nitrate-rich and thiocyanate-rich vegetables are co-ingested.

View Article and Find Full Text PDF