Publications by authors named "Paul G Wahome"

Metabolite mining of environmentally collected aquatic and marine microbiomes offers a platform for the discovery of new therapeutic lead molecules. Combining a prefractionated chromatography library with liquid chromatography tandem mass spectrometry (LC-MS/MS)-based molecular networking and biological assays, we isolated and characterized two new micropeptins ( and ) along with the previously characterized micropeptin 996. These metabolites showed potency in anti-neuroinflammatory assays using BV-2 mouse microglial cells, showing a 50% reduction in inflammation in a range from 1 to 10 μM.

View Article and Find Full Text PDF

Cyanobufalins A-C (1-3), a new series of cardiotoxic steroids, have been discovered from cyanobacterial blooms in Buckeye Lake and Grand Lake St. Marys in Ohio. Compounds 1-3 contain distinctive structural features, including geminal methyl groups at C-4, a 7,8 double bond, and a C-16 chlorine substituent that distinguish them from plant- or animal-derived congeners.

View Article and Find Full Text PDF

Four new microcystin congeners are described including the first three examples of microcystins containing the rare doubly homologated tyrosine residue 2-amino-5-(4-hydroxyphenyl)pentanoic acid (Ahppa) (1-4). Large-scale harvesting and biomass processing allowed the isolation of substantial quantities of these compounds, thus enabling complete structure determination by NMR as well as cytotoxicity evaluation against selected cancer cell lines. The new Ahppa-toxins all incorporate Ahppa residues at the 2-position, and one of these also has a second Ahppa at position 4.

View Article and Find Full Text PDF

In an effort to isolate and characterize bioactive secondary metabolites from blooms, collected cyanobacteria biomass was subjected to bioassay-guided extraction and fractionation using the human colon cancer cell line HCT-116, resulting in the isolation and subsequent structure characterization of a linear polyketide trichophycin A (). The planar structure of was completed using 1D and 2D NMR spectroscopy and high-resolution electrospray ionization mass spectrometry (HRESIMS). Trichophycin A was moderately toxic against the murine neuroblastoma cell line Neuro-2A (EC: 6.

View Article and Find Full Text PDF

Cyanobacteria possess a unique capacity for the production of structurally novel secondary metabolites compared to the biosynthetic abilities of other environmental prokaryotes such as bacteria of the genus Streptomyces. Two different strategies to explore cyanobacteria-derived natural products have been explored previously: (1) cultivation of single cyanobacterial strains, in bioreactors for example; (2) bulk collections from the environment of so called 'algal blooms' that are dominated by cyanobacteria. In this study a new environmentally friendly collection technique for obtaining large quantities of algal bloom biomass was utilized.

View Article and Find Full Text PDF

Aquatic microbes produce diverse secondary metabolites with interesting biological activities. Cytotoxic metabolites have the potential to become lead compounds or drugs for cancer treatment. Many cytotoxic compounds, however, show undesirable toxicity at higher concentrations.

View Article and Find Full Text PDF

Ricin is a member of the ubiquitous ribosome-inactivating protein (RIP) family of toxins. The Centers for Disease Control and Prevention (CDC) classify ricin and related toxins as Category B biothreat agents. There are currently no antidotes or therapeutics to counteract RIPs in humans.

View Article and Find Full Text PDF

Ricin is a member of the ribosome-inactivating protein (RIP) family of plant and bacterial toxins. In this study we used a high-throughput, cell-based assay to screen more than 118,000 compounds from diverse chemical libraries for molecules that reduced ricin-induced cell death. We describe three compounds, PW66, PW69, and PW72 that at micromolar concentrations significantly delayed ricin-induced cell death.

View Article and Find Full Text PDF

This review summarizes the successes and continuing challenges associated with the identification of small-molecule inhibitors of ricin and Shiga toxins, members of the RNA N-glycosidase family of toxins that irreversibly inactivate eukaryotic ribosomes through the depurination of a conserved adenosine residue within the sarcin-ricin loop (SRL) of 28S rRNA. Virtual screening of chemical libraries has led to the identification of at least three broad classes of small molecules that bind in or near the toxin's active sites and thereby interfere with RNA N-glycosidase activity. Rational design is being used to improve the specific activity and solubility of a number of these compounds.

View Article and Find Full Text PDF

We used two virtual screening programs, ICM and GOLD, to dock nearly 50,000 compounds into each of two conformations of the target protein ricin A chain (RTA). A limited control set suggests that candidates scored highly by two programs may have a higher probability of being ligands than those in a list from a single program. Based on the virtual screens, we purchased 306 compounds that were subjected to a kinetic assay.

View Article and Find Full Text PDF

The Category B agents, ricin and shiga toxin (Stx), are RNA N-glycosidases that target a highly conserved adenine residue within the sarcin-ricin loop of eukaryotic 28S ribosomal RNA. In an effort to identify small-molecule inhibitors of these toxins that could serve as lead compounds for potential therapeutics, we have developed a simple Vero cell-based high-throughput cytotoxicity assay and have used it to screen approximately 81,300 compounds in 17 commercially available chemical libraries. This initial screen identified approximately 300 compounds with weak (>or=30 to <50%), moderate (>or=50 to <80%), or strong (>or=80%) ricin inhibitory activity.

View Article and Find Full Text PDF

Log phase Bacillus subtilis cells lacking the mscL gene encoding the mechanosensitive (MS) channel of large conductance are sensitive to an osmotic downshock > or =0.5 M. However, B.

View Article and Find Full Text PDF

Spores of Bacillus subtilis have a thick outer layer of relatively insoluble protein called the coat, which protects spores against a number of treatments and may also play roles in spore germination. However, elucidation of precise roles of the coat in spore properties has been hampered by the inability to prepare spores lacking all or most coat material. In this work, we show that spores of a strain with mutations in both the cotE and gerE genes, which encode proteins involved in coat assembly and expression of genes encoding coat proteins, respectively, lack most extractable coat protein as seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as well as the great majority of the coat as seen by atomic force microscopy.

View Article and Find Full Text PDF

Free amino acids, dipicolinic acid, and unidentified small molecules were released early in Bacillus spore germination before hydrolysis of the peptidoglycan cortex, but adenine nucleotides and 3-phosphoglycerate were not. These results indicate that early in germination there is a major selective change in the permeability of the spore's inner membrane.

View Article and Find Full Text PDF

Spores of Bacillus subtilis spoVF strains that cannot synthesize dipicolinic acid (DPA) but take it up during sporulation were prepared in medium with various DPA concentrations, and the germination and viability of these spores as well as the DPA content in individual spores were measured. Levels of some other small molecules in DPA-less spores were also measured. These studies have allowed the following conclusions.

View Article and Find Full Text PDF

Previous work has shown that the mechanosensitive (MS) channel of large conductance (MscL) is essential for preventing lysis of Bacillus subtilis log phase cells upon a rapid, severe osmotic downshock. Growing cells of B. subtilis strains lacking MscL and one or more putative MS channel proteins of small conductance (YhdY, YkuT and YfkC) showed even higher sensitivity to an osmotic downshock.

View Article and Find Full Text PDF

A translational lacZ fusion of the Bacillus subtilis mscL gene that encodes the mechanosensitive channel of large conductance (MscL) was expressed at significant levels during log phase growth of B. subtilis, and the level of mscL-lacZ expression was increased 1.5-fold by growth in medium with high salt (1 M NaCl).

View Article and Find Full Text PDF

Bacteria of various Bacillus species are able to grow in media with very high osmotic strength in part due to the accumulation of low-molecular-weight osmolytes such as glycine betaine (GB). Cells of Bacillus species grown in rich and minimal media contained low levels of GB, but GB levels were 4- to 60-fold higher in cells grown in media with high salt. GB levels in Bacillus subtilis cells grown in minimal medium were increased approximately 7-fold by GB in the medium and 60-fold by GB plus high salt.

View Article and Find Full Text PDF

Luzodiol (4), a diterpene possessing a new carbon skeleton, and five new sesquiterpenes (5-9) of the snyderane class have been isolated from the red alga Laurencia luzonensis and their structures determined by spectroscopic analysis. The relative stereochemistry of the known luzonensol (3) was assigned by its conversion to palisadin B (10).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoaprd2cj4a9t3tus632gerc39ejghdfc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once