Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293.
View Article and Find Full Text PDFThe need for new safe and efficacious therapies has led to an increased focus on biologics produced in mammalian cells. The human cell line HEK293 has bio-synthetic potential for human-like production attributes and is currently used for manufacturing of several therapeutic proteins and viral vectors. Despite the increased popularity of this strain we still have limited knowledge on the genetic composition of its derivatives.
View Article and Find Full Text PDFThe use of peptides as therapeutic agents is undergoing a renaissance with the expectation of new drugs with enhanced levels of efficacy and safety. Their clinical potential will be only fully realised once their physicochemical and pharmacokinetic properties have been precisely controlled. Here we demonstrate a reversible peptide self-assembly strategy to control and prolong the bioactivity of a native peptide hormone in vivo.
View Article and Find Full Text PDFAggregation and amyloid fibril formation of peptides and proteins is a widespread phenomenon. It has serious implications in a range of areas from biotechnological and pharmaceutical applications to medical disorders. The aim of this study was to develop a better understanding of the mechanism of aggregation and amyloid fibrillation of an important pharmaceutical, human glucagon-like peptide-1 (GLP-1).
View Article and Find Full Text PDFWe have shown that two of the matrix metalloproteinases (MMPs), matrilysin and stromelysin-1, are capable of cleaving all of the human IgG subclasses. The cleavage occurs at a conserved site in the CH(2) domain of the heavy chain of IgG, releasing a single chain Fc-like fragment. We have not been able to demonstrate cleavage of IgA, IgD, IgM or IgE classes, which lack the cleavage site, nor could we show cleavage of IgG by collagenase, gelatinase, macrophage metalloelastase or membrane-type (MT)-MMP.
View Article and Find Full Text PDF