We demonstrate digitally enhanced interferometry with better than 100 dB mean cross-talk suppression with Golay complementary pairs using a combination of numerical simulations and experiments. These results exceed previously reported cross-talk suppression using conventional maximal length sequences by more than 48 dB.
View Article and Find Full Text PDFWe demonstrate the algebraic cancellation of residual phase cross talk in digitally enhanced heterodyne interferometry (DEHeI), a code division multiplexing technique for interferometric sensing. By using linear combinations of parallel decoding operations at multiple delays, we synthesize a zero correlation for spurious signals and remove phase cross talk: a method we call offset decoding. We experimentally demonstrate 70 dB of signal isolation and over 40 dB greater isolation than the equivalent standard implementation of DEHeI.
View Article and Find Full Text PDFOptical phased arrays (OPAs) are devices that use the coherence of light to control the interference pattern in the far field, which enables them to steer a laser beam with no moving parts. As such, OPAs have potential applications in laser communications, target acquisition and tracking, metrology, and directed energy. In this Letter, we present a control architecture for an actively phase-locked OPA, capable of steering a laser beam at speeds limited by the actuation bandwidth of electro-optic modulators.
View Article and Find Full Text PDFDigitally enhanced heterodyne interferometry (DEHI) combines the sub-wavelength displacement measurements of conventional laser interferometry with the multiplexing capabilities of spread-spectrum modulation techniques to discriminate between multiple electric fields at a single photodetector. Technologies that benefit from DEHI include optical phased arrays, which require the simultaneous phase measurement of a large number of electric fields. A consequence of measuring the phase of multiple electric fields is the introduction of crosstalk, which can degrade measurement precision.
View Article and Find Full Text PDFWe report two dimensional laser induced fluorescence spectral images exploring the lower torsion-vibration manifolds in S ( < 560 cm) and S ( < 420 cm) -fluorotoluene. Analysis of the images reveals strong torsion-vibration interactions and provides an extensive set of torsion-vibration state energies in both electronic states (estimated uncertainty ±0.2 cm), which are fit to determine key constants including barrier heights, torsional constants, and torsion-vibration interaction constants.
View Article and Find Full Text PDFThe technical embodiment of the Huygens-Fresnel principle, an optical phased array (OPA) is an arrangement of optical emitters with relative phases controlled to create a desired beam profile after propagation. One important application of an OPA is coherent beam combining (CBC), which can be used to create beams of higher power than is possible with a single laser source, especially for narrow linewidth sources. Here we present an all-fiber architecture that stabilizes the relative output phase by inferring the relative path length differences between lasers using the small fraction of light that is back-reflected into the fiber at the OPA's glass-air interface, without the need for any external sampling optics.
View Article and Find Full Text PDF