Publications by authors named "Paul G Lucey"

Hematite (FeO) is a common oxidization product on Earth, Mars, and some asteroids. Although oxidizing processes have been speculated to operate on the lunar surface and form ferric iron-bearing minerals, unambiguous detections of ferric minerals forming under highly reducing conditions on the Moon have remained elusive. Our analyses of the Moon Mineralogy Mapper data show that hematite, a ferric mineral, is present at high latitudes on the Moon, mostly associated with east- and equator-facing sides of topographic highs, and is more prevalent on the nearside than the farside.

View Article and Find Full Text PDF

Water ice may be allowed to accumulate in permanently shaded regions on airless bodies in the inner solar system such as Mercury, the Moon, and Ceres [Watson K, et al. (1961) 66:3033-3045]. Unlike Mercury and Ceres, direct evidence for water ice exposed at the lunar surface has remained elusive.

View Article and Find Full Text PDF

We find that the reflectance of the lunar surface within 5 ° of latitude of the South Pole increases rapidly with decreasing temperature, near ~110K, behavior consistent with the presence of surface water iceThe North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5° from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10° to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice.

View Article and Find Full Text PDF

Unlabelled: We developed a prototype instrument called the Standoff Biofinder, which can quickly locate biological material in a 500 cm(2) area from a 2 m standoff distance with a detection time of 0.1 s. All biogenic materials give strong fluorescence signals when excited with UV and visible lasers.

View Article and Find Full Text PDF

A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100  m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20  km).

View Article and Find Full Text PDF

Lunar swirls are high-albedo markings on the Moon that occur in both mare and highland terrains; their origin remains a point of contention. Here, we use data from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer to support the hypothesis that the swirls are formed as a result of deflection of the solar wind by local magnetic fields. Thermal infrared data from this instrument display an anomaly in the position of the silicate Christiansen Feature consistent with reduced space weathering.

View Article and Find Full Text PDF

In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy.

View Article and Find Full Text PDF

Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species.

View Article and Find Full Text PDF

Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar.

View Article and Find Full Text PDF

We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale.

View Article and Find Full Text PDF

The authors have developed an integrated remote Raman and laser-induced breakdown spectroscopy (LIBS) system for measuring both the Raman and LIBS spectra of minerals with a single 532 nm laser line of 35 mJ/pulse and 20 Hz. The instrument has been used for analyzing both Raman and LIBS spectra of carbonates, sulfates, hydrous and anhydrous silicates, and iron oxide minerals in air. These experiments demonstrate that by focusing a frequency-doubled 532 nm Nd:YAG pulsed laser beam with a 10x beam expander to a 529-microm diameter spot on a mineral surface located at 9 m, it is possible to measure simultaneously both the remote Raman and LIBS spectra of calcite, gypsum and olivine by adjusting the laser power electronically.

View Article and Find Full Text PDF

Field and laboratory measurements using an interferometer spectrometer based on the Sagnac interferometer using a microbolometer array detector are presented. Remotely obtained signatures collected with this instrument and with a cryogenic IR spectrometer are compared and shown to closely correspond. Ground-to-ground and air-to-ground image products are presented that demonstrate the image quality of the sensor.

View Article and Find Full Text PDF

Raman spectra of several minerals and organics were obtained from a small portable instrument at a distance of 10 m in a well-illuminated laboratory with a single 532 nm laser pulse with energy of 35 mJ/pulse. Remote Raman spectra of common minerals (dolomite, calcite, marble, barite, gypsum, quartz, anatase, fluorapatite, etc.) obtained in a short period of time (1.

View Article and Find Full Text PDF

Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) of solid samples have both been shown to be feasible with sample-to-instrument distances of many meters. The two techniques are very useful together, as the combination of elemental compositions from LIBS and molecular vibrational information from Raman spectroscopy strongly complement each other. Remote LIBS and Raman spectroscopy spectra were taken together on a number of mineral samples including sulfates, carbonates and silicates at a distance of 8.

View Article and Find Full Text PDF

Raman spectroscopy is a powerful technique for materials analysis, and we are developing and analyzing a remote Raman system for use on a planetary lander or rover. We have acquired data at a distance of 10m from a variety of geologic materials using different instrument designs. We have employed a pulsed laser with both an ungated detector and a gated detector.

View Article and Find Full Text PDF

A remote Raman system has been developed utilizing a 532nm pulsed laser and gated intensified charged couple device (ICCD) detector in the oblique geometry. When the system is set for 50m sample distance it is capable of measuring Raman spectra of minerals located at distances in the range of 10-65m from the telescope. Both daytime and nighttime operations are feasible and the spectra of minerals can be measured in a short period of time, of the order of a few seconds.

View Article and Find Full Text PDF

Raman spectra of alpha-quartz (Qz) grains of various size (250 microm to < 11 microm) and arrangement (individual and aggregated) have been investigated with a combination of confocal Raman and micro-Raman systems. Frequency downshift and line broadening of the 464 cm(-1), v,(Si-O-Si) band are observed in the smallest size group (< 11 microm, both individual grains and aggregates) because of laser-induced heating and are used to estimate the temperature of the sampled region. The intensity ratio of the anti-Stokes to Stokes Raman lines is also used to estimate the vibrational temperature of the samples under different excitation power.

View Article and Find Full Text PDF

We have designed and developed two breadboard versions of stand-off Raman spectroscopic systems for landers based on a 5-in. Maksutov-Cassegrain telescope and a small (4-in. diameter) Newtonian telescope receiver.

View Article and Find Full Text PDF