Reaching back more than a century, suspension cultures have provided major insights into processes of histogenesis; e.g., cell communication, distinction of self/nonself, cell sorting and cell adhesion.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2021
Acetylcholinesterase (AChE), an enzyme catalyzing the degradation of acetylcholine, plays an important suppressive role in the cholinergic regulation by terminating the action of acetylcholine. The expression of acetylcholinesterase and other cholinergic components is not restricted to only brain and nerve tissues but can also be found in non-neuronal tissues like the immune system and bone tissue. Primary identification of these components has been achieved.
View Article and Find Full Text PDFGenome editing (GE) represents a powerful approach to fight inherited blinding diseases in which the underlying mutations cause the degeneration of the light sensing photoreceptor cells of the retina. Successful GE requires the efficient repair of DNA double-stranded breaks (DSBs) generated during the treatment. Rod photoreceptors of adult mice have a highly specialized chromatin organization, do not efficiently express a variety of DSB response genes and repair DSBs very inefficiently.
View Article and Find Full Text PDFThere is ample evidence that cholinergic actions affect the health status of bones in vertebrates including man. Nicotine smoking, but also exposure to pesticides or medical drugs point to the significance of cholinergic effects on bone status, as reviewed here in Introduction. Then, we outline processes of endochondral ossification, and review respective cholinergic actions.
View Article and Find Full Text PDFPurpose: Reaggregates from E6 embryonic chicken retina exhibit areas corresponding to an inner plexiform layer (IPL), which presents an ideal in vitro model to test conditions and constraints of cholinergic and glutamatergic network formation, providing a basis for retinal tissue engineering. Here, we show that ipl formation is regulated by cholinergic starburst amacrine cells (SACs), a glial scaffold and by L-glutamate.
Methods: Rosetted spheroids were cultured in absence or presence of 0.
The forebrain develops into the telencephalon, diencephalon, and optic vesicle (OV). The OV further develops into the optic cup, the inner and outer layers of which develop into the neural retina and retinal pigmented epithelium (RPE), respectively. We studied the change in fate of the OV by using embryonic transplantation and explant culture methods.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2018
It is well known that ionizing radiation causes adverse effects on various mammalian tissues. However, there is little information on the biological effects of heavy ion radiation on the heart. In order to fill this gap, we systematically examined DNA-damage induction and repair, as well as proliferation and apoptosis in avian cardiomyocyte cultures irradiated with heavy ions such as titanium and iron, relevant for manned space-flight, and carbon ions, as used for radiotherapy.
View Article and Find Full Text PDFMulticellular spheroids represent a well-established 3D model to study healthy and diseased cells in vitro. The use of conventional 3D cell culture platforms for the generation of multicellular spheroids is limited to cell types that easily self-assemble into spheroids because less adhesive cells fail to form stable aggregates. A high-precision micromoulding technique developed in our laboratory produces deep conical agarose microwell arrays that allow the cultivation of uniform multicellular aggregates, irrespective of the spheroid formation capacity of the cells.
View Article and Find Full Text PDFIonizing and near-infrared radiation are both part of the therapeutic spectrum in cancer treatment. During cancer therapy ionizing radiation is typically used for non-invasive reduction of malignant tissue, while near-infrared photobiomodulation is utilized in palliative medical approaches, e.g.
View Article and Find Full Text PDFIn vertebrates, the retinal pigment epithelium (RPE) and photoreceptors of the neural retina (NR) comprise a functional unit required for vision. During vertebrate eye development, a conversion of the RPE into NR can be induced by growth factors at optic cup stages, but the reverse process, the conversion of NR tissue into RPE, has not been reported. Here, we show that bone morphogenetic protein (BMP) signalling can reprogram the NR into RPE at optic cup stages in chick.
View Article and Find Full Text PDFMost components of the cholinergic system are detected in skeletogenic cell types in vitro, yet the function of this system in skeletogenesis remains unclear. Here, we analyzed endochondral ossification in mutant murine fetuses, in which genes of the rate-limiting cholinergic enzymes acetyl- (AChE), or butyrylcholinesterase (BChE), or both were deleted (called here A-B+, A+B-, A-B-, respectively). In all mutant embryos bone growth and cartilage remodeling into mineralizing bone were accelerated, as revealed by Alcian blue (A-blu) and Alizarin red (A-red) staining.
View Article and Find Full Text PDFFormation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death.
View Article and Find Full Text PDFIonizing radiation (IR) exerts deleterious effects on the developing brain, since proliferative neuronal progenitor cells are highly sensitive to IR-induced DNA damage. Assuming a radiation response that is comparable to mammals, the chick embryo would represent a lower vertebrate model system that allows analysis of the mechanisms underlying this sensitivity, thereby contributing to the reduction, refinement and replacement of animal experiments. Thus, this study aimed to elucidate the radiation response of the embryonic chick retina in three selected embryonic stages.
View Article and Find Full Text PDFAs a means to analyze anti-inflammatory effects by radiation and/or by cholinergic mechanisms, we found that cultured primary human osteoblasts express most cholinergic components. After X-ray irradiation, their level of acetylcholinesterase (AChE) was strongly elevated. As a 3D model, we cultured mesenchymal stem cells isolated from E11 mouse embryos as micromass nodules, and differentiated them into chondro- and osteoblasts.
View Article and Find Full Text PDFThe increasing application of charged particles in radiotherapy requires a deeper understanding of early and late side effects occurring in skin, which is exposed in all radiation treatments. We measured cellular and molecular changes related to the early inflammatory response of human skin irradiated with carbon ions, in particular cell death induction and changes in differentiation and proliferation of epidermal cells during the first days after exposure. Model systems for human skin from healthy donors of different complexity, i.
View Article and Find Full Text PDFThe aim of this study was to investigate possible effects of ionizing irradiation on the electrophysiological functionality of cardiac myocytes in vitro. Primary chicken cardiomyocytes with spontaneous beating activity were irradiated with X-rays (dose range of 0.5-7 Gy).
View Article and Find Full Text PDFGliotoxic responses complicate human eye diseases, the causes of which often remain obscure. Here, we activated Müller cells (MCs) by the gliotoxin DL-α-aminoadipate (AAA) and assayed possible protective effects by pigment epithelium-derived factor (PEDF) in RPE-free retinal explants of the E6 chick embryo. These models are suited to analyze gliotoxic reactions in vitro, since the avian retina contains only Müller cells (MCs) as glial components, and the RPE-free explants are devoid of a major PEDF source.
View Article and Find Full Text PDFBackground: DNA double-strand break (DSB) repair is crucial for the maintenance of genomic stability, and chromatin organization represents one important factor influencing repair efficiency. Mouse rod photoreceptors with their inverted heterochromatin organization containing a single large chromocenter in the middle of the nucleus provide a unique model system to study DSB repair in heterochromatin of living animals.
Results: We observed that adult rod photoreceptors repair only half of the induced DSBs within 1 day after damage induction, a defect that is neither observed in any other cell type of the adult retina nor in rod photoreceptor precursor cells of postnatal day 4 mice.
The retinal pigment epithelium (RPE) is indispensable for vertebrate eye development and vision. In the classical model of optic vesicle patterning, the surface ectoderm produces fibroblast growth factors (FGFs) that specify the neural retina (NR) distally, whereas TGFβ family members released from the proximal mesenchyme are involved in RPE specification. However, we previously proposed that bone morphogenetic proteins (BMPs) released from the surface ectoderm are essential for RPE specification in chick.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) is a most remarkable protein, not only because it is one of the fastest enzymes in nature, but also since it appears in many molecular forms and is regulated by elaborate genetic networks. AChE is expressed in many tissues during development and in mature organisms, as well as in healthy and diseased states. In search for alternative, "non-classical" functions of cholinesterases (ChEs), AChE could either work within the frame of classic cholinergic systems, but in non-neural tissues ("non-synaptic function"), or act non-enzymatically.
View Article and Find Full Text PDFCholine acetyltransferase (ChAT) and acetylcholinesterase (AChE) are the decisive enzymatic activities regulating the availability of acetylcholine (ACh) at a given synaptic or nonsynaptic locus. The only cholinergic cells of the mature inner retina are the so-called starburst amacrine cells (SACs). A type-I SAC, found at the outer border of the inner plexiform layer (IPL), forms a synaptic subband "a" within the IPL, while a type-II SAC located at the inner IPL border projects into subband "d.
View Article and Find Full Text PDFThe enzyme acetylcholinesterase (AChE) terminates synaptic transmission at cholinergic synapses by hydrolyzing the neurotransmitter acetylcholine, but can also exert 'non-classical', morpho-regulatory effects on developing neurons such as stimulation of neurite outgrowth. Here, we investigated the role of AChE binding to laminin-1 on the regulation of neurite outgrowth by using cell culture, immunocytochemistry, and molecular biological approaches. To explore the role of AChE, we examined fiber growth of cells overexpressing different forms of AChE, and/or during their growth on laminin-1.
View Article and Find Full Text PDFNear infrared (NIR) and X-rays are radiations from different sides of the wavelength spectrum but both are used during medical treatments, as they have severe impacts on cellular processes, including metabolism, gene expression, proliferation and survival. However, both radiations differ strictly in their consequences for exposed patients: NIR effects are generally supposed to be positive, mostly ascribed to a stimulation of metabolism, whereas X-ray leads to genetic instability, an increase of reactive oxygen species (ROS) and DNA damages and finally to cellular death by apoptosis in tumor cells. Since genomic stability after X-irradiation depends on the mitochondrial metabolism, which is well known to be regulated by NIR, we analyzed the impact of NIR on cellular responses of fibroblasts, retinal progenitor cells and keratinocytes to X-radiation.
View Article and Find Full Text PDFProtein Pept Lett
February 2012
Acetylcholinesterase (AChE) is a most remarkable protein, not only because it is one of the fastest enzymes in nature, but also since it appears in many molecular forms and is regulated by elaborate genetic networks. As revealed by sensitive histochemical procedures, AChE is expressed specifically in many tissues during development and in many mature organisms, as well as in healthy and diseased states. Therefore it is not surprising that there has been a long-standing search for additional, "non-classical" functions of cholinesterases (ChEs).
View Article and Find Full Text PDFStructurally stable in vitro-model systems are indispensible to analyse neural development during embryogenesis, follow cellular differentiation and evaluate neurotoxicological or growth factor effects. Here we describe a three-dimensional, long-term in vitro-culture system of the embryonic chick retina which supports photoreceptor development. Retinal tissue was isolated from E6 chick eye, and cultured as explants by continuous orbital rotation to allow free floatation without any supporting materials.
View Article and Find Full Text PDF