Publications by authors named "Paul G Genever"

Although some budding yeasts have proved tractable and intensely studied models, others are more recalcitrant. Debaryomyces hansenii, an important yeast species in food and biotechnological industries with curious physiological characteristics, has proved difficult to manipulate genetically and remains poorly defined. To remedy this, we have combined live cell fluorescent dyes with high-resolution imaging techniques to define the sub-cellular features of D.

View Article and Find Full Text PDF

Background: Bone marrow stromal cells (BMSCs) are highly heterogeneous, which may reflect their diverse biological functions, including tissue maintenance, haematopoietic support and immune control. The current understanding of the mechanisms that drive the onset and resolution of heterogeneity, and how BMSCs influence other cells in their environment is limited. Here, we determined how the secretome and importantly the extracellular matrix of BMSCs can influence cellular phenotype.

View Article and Find Full Text PDF

Pharmacopoeial standards ensure quality control of established medicines. It is widely believed that translation of cell therapy medicines will be facilitated by defining and adopting relevant standards. Mesenchymal stromal cells (MSCs) are used extensively for multiple indications in regenerative medicine.

View Article and Find Full Text PDF

Protein N-termini provide uniquely reactive motifs for single site protein modification. Though a number of reactions have been developed to target this site, the selectivity, generality, and stability of the conjugates formed has not been studied. We have therefore undertaken a comprehensive comparative study of the most promising methods for N-terminal protein modification, and find that there is no 'one size fits all' approach, necessitating reagent screening for a particular protein or application.

View Article and Find Full Text PDF

Heterogeneity of bone marrow mesenchymal stromal cells (MSCs, frequently referred to as "mesenchymal stem cells") clouds biological understanding and hampers their clinical development. In MSC cultures most commonly used in research and therapy, we have identified an MSC subtype characterized by CD317 expression (CD317 (29.77 ± 3.

View Article and Find Full Text PDF

Hydrogels with spatio-temporally controlled properties are appealing materials for biological and pharmaceutical applications. We make use of mild acidification protocols to fabricate hybrid gels using calcium alginate in the presence of a preformed thermally triggered gel based on a low-molecular-weight gelator (LMWG) 1,3:2:4-di(4-acylhydrazide)-benzylidene sorbitol (DBS-CONHNH). Nonwater-soluble calcium carbonate slowly releases calcium ions over time when exposed to an acidic pH, triggering the assembly of the calcium alginate gel network.

View Article and Find Full Text PDF

This paper reports simple strategies to fabricate self-assembled artificial tubular and filamentous systems from a low molecular weight gelator (LMWG). In the first strategy, tubular 'core-shell' gel structures based on the dibenzylidenesorbitol-based LMWG DBS-CONHNH were made in combination with the polymer gelator (PG) calcium alginate. In the second approach, gel filaments based on DBS-CONHNH alone were prepared by wet spinning at elevated concentrations using a 'solvent-switch' approach.

View Article and Find Full Text PDF

Immune thrombocytopenia (ITP) is an acquired autoimmune condition characterized by both reduced platelet production and the destruction of functionally normal platelets by sustained attack from the immune system. However, the effect of prolonged ITP on the more immature hematopoietic progenitors remains an open area of investigation. By using a murine in vivo model of extended ITP, we revealed that ITP progression drives considerable progenitor expansion and bone marrow (BM) remodeling.

View Article and Find Full Text PDF

We report the preparation of hybrid self-assembled microgel beads by combining the low molecular weight gelator (LMWG) DBS-CONHNH and the natural polysaccharide calcium alginate polymer gelator (PG). Microgel formulations based on LMWGs are extremely rare due to the fragility of the self-assembled networks and the difficulty of retaining any imposed shape. Our hybrid beads contain interpenetrated LMWG and PG networks, and are obtained by an emulsion method, allowing the preparation of spherical gel particles of controllable sizes with diameters in the mm or μm range.

View Article and Find Full Text PDF

Background: Mesenchymal stem or stromal cells are the most widely used cell therapy to date. They are heterogeneous, with variations in growth potential, differentiation capacity and protein expression profile depending on tissue source and production process. Nomenclature and defining characteristics have been debated for almost 20 years, yet the generic term 'MSC' is used to cover a wide range of cellular phenotypes.

View Article and Find Full Text PDF

The elevated interest in silver ions (Ag) as a broad spectrum antimicrobial for use on medical devices has increased the number and importance of in vitro biocompatibility testing, however little consideration is given to the culture environment in which the assessments are performed. The current investigation assessed the viability of mouse fibroblasts (L929) exposed to different concentrations of Ag in both Dulbecco's modified Eagle's medium (DMEM) and minimal essential medium Eagle, alpha modification (αMEM). We identified a significant increase in the EC of L929 cells exposed to Ag in αMEM compared to DMEM, which was matched by a corresponding decrease in Ag availability in αMEM at concentrations ≤400 μM, as detected by inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF

This paper presents an investigation of how different culture media (i.e. basal and osteogenic media) affect the nanomechanical properties and microstructure of the mineralized matrix produced by the human mesenchymal stem cell line Y201, from both an experimental and theoretical approach.

View Article and Find Full Text PDF

Different cell types have different N-glycomes in mammals. This means that cellular differentiation is accompanied by changes in the N-glycan profile. Yet when the N-glycomes of cell types with differing fates diverge is unclear.

View Article and Find Full Text PDF

There is a lack of hydrogel materials whose properties can be tuned at the point of use. Biological hydrogels, such as collagen, gelate at physiological temperatures; however, they are not always ideal as scaffolds because of their low mechanical strength. Their mechanics can be improved through cross-linking and chemical modification, but these methods still require further synthesis.

View Article and Find Full Text PDF

Multiple myeloma bone disease is devastating for patients and a major cause of morbidity. The disease leads to bone destruction by inhibiting osteoblast activity while stimulating osteoclast activity. Recent advances in multiple myeloma research have improved our understanding of the pathogenesis of multiple myeloma-induced bone disease and suggest several potential therapeutic strategies.

View Article and Find Full Text PDF

We have used the additive manufacturing technology of selective laser sintering (SLS), together with post SLS heat treatment, to produce porous three dimensional scaffolds from the glass-ceramic apatite-wollastonite (A-W). The A-W scaffolds were custom-designed to incorporate a cylindrical central channel to increase cell penetration and medium flow to the center of the scaffolds under dynamic culture conditions during in vitro testing and subsequent in vivo implantation. The scaffolds were seeded with human bone marrow mesenchymal stromal cells (MSCs) and cultured in spinner flasks.

View Article and Find Full Text PDF

Bone remodelling is a vital process which enables bone to repair, renew and optimize itself. Disorders in the bone remodelling process are inevitably manifested in bone-related diseases, such as hypothyroidism, primary hyperparathyroidism and osteoporosis. In our previous work, a predator-prey based mathematical model was developed to simulate bone remodelling cycles under normal and two pathological conditions, hypothyroidism and primary hyperparathyroidism, for trabecular bone at a fixed point.

View Article and Find Full Text PDF

Multiple myeloma (MM)-induced bone disease is mortal for most MM patients. Bisphosphonates are first-line treatment for MM-induced bone disease, since it can inhibit osteoclast activity and the resultant bone resorption by suppressing the differentiation of osteoclast precursors into mature osteoclasts, promoting osteoclast apoptosis and disrupting osteoclast function. However, it is still unclear whether bisphosphonates have an anti-tumour effect.

View Article and Find Full Text PDF

Multiple myeloma (MM) is the second most common haematological malignancy and results in destructive bone lesions. The interaction between MM cells and the bone microenvironment plays an important role in the development of the tumour cells and MM-induced bone disease and forms a 'vicious cycle' of tumour development and bone destruction, intensified by suppression of osteoblast activity and promotion of osteoclast activity. In this paper, a mathematical model is proposed to simulate how the interaction between MM cells and the bone microenvironment facilitates the development of the tumour cells and the resultant bone destruction.

View Article and Find Full Text PDF

Introduction: For clinical applications, Mesenchymal Stromal Cells (MSC) can be isolated from bone marrow and adipose tissue of autologous or allogeneic origin. Allogeneic cell usage has advantages but may harbor the risk of sensitization against foreign HLA. Therefore, we evaluated whether bone marrow and adipose tissue-derived MSC are capable of inducing HLA-specific alloreactivity.

View Article and Find Full Text PDF

Background: Recent studies with bone marrow (BM)-derived Mesenchymal Stromal Cells (MSC) in transplant recipients demonstrate that treatment with MSC is safe and clinically feasible. While BM is currently the preferred source of MSC, adipose tissue is emerging as an alternative. To develop efficient therapies, there is a need for preclinical efficacy studies in transplantation.

View Article and Find Full Text PDF

Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) can differentiate into multiple lineages including osteogenic and adipogenic cells. Wnt signalling has been implicated in controlling BMSC fate, but the mechanisms are unclear and apparently conflicting data exist. Here we show that a novel glycogen synthase kinase 3β inhibitor, AR28, is a potent activator of canonical Wnt signalling using in vitro β-catenin translocation studies and TCF-reporter assays.

View Article and Find Full Text PDF

Osteocytes play a critical role in the regulation of bone remodelling by translating strain due to mechanical loading into biochemical signals transmitted through the interconnecting lacuno-canalicular network to bone lining cells (BLCs) on the bone surface. This work aims to examine the effects of disruption of that intercellular communication by simulation of osteocyte apoptosis in the bone matrix. A model of a uniformly distributed osteocyte network has been developed that simulates the signalling through the network to the BLCs based on strain level.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0i9gp0t5v2ljtesem198s46gf1vaj3f5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once