Publications by authors named "Paul G Egland"

The placenta serves in immunological defense of the fetus, providing proteins essential for innate immunity. Maternal and fetal portions of two mammalian placenta types, discoid, and cotyledonary, were separated and analyzed for antibacterial activity using a culture-independent method. Antibacterial activity was detected in both maternal and fetal portions of all placenta types tested.

View Article and Find Full Text PDF

Streptococcus gordonii and Veillonella atypica, two early-colonizing members of the dental plaque biofilm, participate in a relationship that results in increased transcription of the S. gordonii gene amyB, encoding an alpha-amylase. We show that the transcription factor CcpA is required for this interspecies interaction.

View Article and Find Full Text PDF

4,5-Dihydroxy-2,3-pentanedione (DPD), a product of the LuxS enzyme in the catabolism of S-ribosylhomocysteine, spontaneously cyclizes to form autoinducer 2 (AI-2). AI-2 is proposed to be a universal signal molecule mediating interspecies communication among bacteria. We show that mutualistic and abundant biofilm growth in flowing saliva of two human oral commensal bacteria, Actinomyces naeslundii T14V and Streptococcus oralis 34, is dependent upon production of AI-2 by S.

View Article and Find Full Text PDF

The usual context for genome-genome interactions is DNA-DNA interactions, but the manifestation of the genome is the cell. Here we focus on cell-cell interactions and relate them to the process of building multi-species biofilm communities. We propose that dental plaque communities originate as a result of intimate interactions between cells (genomes) of different species and not through clonal growth of genetically identical cells.

View Article and Find Full Text PDF

During the development of human oral biofilm communities, the spatial arrangement of the bacteria is thought to be driven by metabolic interactions between them. Streptococcus gordonii and Veillonella atypica, two early colonizing members of the dental plaque biofilm, have been postulated to participate in metabolic communication; S. gordonii ferments carbohydrates to form lactic acid, which is a preferred fermentation substrate for V.

View Article and Find Full Text PDF

Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication.

View Article and Find Full Text PDF