Publications by authors named "Paul G Daft"

The role of myeloid cell-specific TGF-β signaling in non-small-cell lung cancer (NSCLC)-induced osteolytic bone lesion development is unknown. We used a genetically engineered mouse model, knockout (KO), which has a loss of TGF-β signaling specifically in myeloid lineage cells, and we found that the area of H1993 cell-induced osteolytic bone lesions was decreased in KO mice, relative to the area in control littermates. The bone lesion areas were correlated with tumor cell proliferation, angiogenesis, and osteoclastogenesis in the microenvironment.

View Article and Find Full Text PDF

Osteosarcoma (OS) is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF) plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII) protein is an important regulator of OS growth.

View Article and Find Full Text PDF

Osteosarcoma is among the most frequently occurring primary bone tumors, primarily affecting adolescents and young adults. Despite improvements in osteosarcoma treatment, more specific molecular targets are needed as potential therapeutic options. One target of interest is α-Ca(2+)/calmodulin-dependent protein kinase II (α-CaMKII), a ubiquitous mediator of Ca(2+)-linked signaling, which has been shown to regulate tumor cell proliferation and differentiation.

View Article and Find Full Text PDF