Publications by authors named "Paul G Craze"

Recent declines in biodiversity have increased interest in the link between biodiversity and the provision and sustainability of ecosystem services across space and time. We mapped the complex network of interactions between herbivores and parasitoids to examine the relationship between parasitoid species richness, functional group diversity and the provision of natural pest control services. Quantitative food webs were constructed for 10 organic and 10 conventional farms.

View Article and Find Full Text PDF

Climate change is expected to drive species extinct by reducing their survival, reproduction and habitat. Less well appreciated is the possibility that climate change could cause extinction by changing the ecological interactions between species. If ecologists, land managers and policy makers are to manage farmland biodiversity sustainably under global climate change, they need to understand the ways in which species interact with each other as this will affect the way they respond to climate change.

View Article and Find Full Text PDF

Higher trophic level species such as parasites, parasitoids, and pathogens are frequently ignored in community studies, despite playing key roles in the structure, function, and stability of ecological communities. Furthermore, such species are typically among the last in a community to reestablish due to their reliance upon lower trophic level resources and a requirement for persistent, stable ecological conditions. Consequently their presence alone can be indicative of healthy ecosystems.

View Article and Find Full Text PDF

In large populations, genetically distinct phenotypic morphs can be maintained in equilibrium (at a 1 : 1 ratio in the simplest case) by frequency-dependent selection, as shown by Sewall Wright. The consequences of population fragmentation on this equilibrium are not widely appreciated. Here, I use a simple computational model to emphasize that severe fragmentation biases the morph ratio towards the homozygous recessive genotype through drift in very small populations favouring the more common recessive allele.

View Article and Find Full Text PDF

While many studies have demonstrated that organic farms support greater levels of biodiversity, it is not known whether this translates into better provision of ecosystem services. Here we use a food-web approach to analyse the community structure and function at the whole-farm scale. Quantitative food webs from 10 replicate pairs of organic and conventional farms showed that organic farms have significantly more species at three trophic levels (plant, herbivore and parasitoid) and significantly different network structure.

View Article and Find Full Text PDF

Anthropogenic climate change is widely expected to drive species extinct by hampering individual survival and reproduction, by reducing the amount and accessibility of suitable habitat, or by eliminating other organisms that are essential to the species in question. Less well appreciated is the likelihood that climate change will directly disrupt or eliminate mutually beneficial (mutualistic) ecological interactions between species even before extinctions occur. We explored the potential disruption of a ubiquitous mutualistic interaction of terrestrial habitats, that between plants and their animal pollinators, via climate change.

View Article and Find Full Text PDF