Entropy (Basel)
October 2024
This paper aims to outline the effectiveness of modern universal gate quantum computers when utilizing different configurations to solve the B-SAT (Boolean satisfiability) problem. The quantum computing experiments were performed using Grover's search algorithm to find a valid solution. The experiments were performed under different variations to demonstrate their effects on the results.
View Article and Find Full Text PDFThe electronic properties of silicon, such as the conductivity, are largely dependent on the density of the mobile charge carriers, which can be tuned by gating and impurity doping. When the device size scales down to the nanoscale, routine doping becomes problematic due to inhomogeneities. Here we report that a molecular monolayer, covalently grafted atop a silicon channel, can play a role similar to gating and impurity doping.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
December 2007
Significant challenges exist in assembling and interconnecting the building blocks of a nanoscale device and being able to electronically address or measure responses at the molecular level. Here we demonstrate the usefulness of engineered proteins as scaffolds for bottom-up self-assembly for building nanoscale devices out of multiple components. Using genetically engineered cowpea mosaic virus, modified to express cysteine residues on the capsid exterior, gold nanoparticles were attached to the viral scaffold in a specific predetermined pattern to produce specific interparticle distances.
View Article and Find Full Text PDFWe have controllably modulated the drain current (I(D)) and threshold voltage (V(T)) in pseudo metal-oxide-semiconductor field-effect transistors (MOSFETs) by grafting a monolayer of molecules atop oxide-free H-passivated silicon surfaces. An electronically controlled series of molecules, from strong pi-electron donors to strong pi-electron acceptors, was covalently attached onto the channel region of the transistors. The device conductance was thus systematically tuned in accordance with the electron-donating ability of the grafted molecules, which is attributed to the charge transfer between the device channel and the molecules.
View Article and Find Full Text PDFNanoelectronic molecular and magnetic tunnel junction (MTJ) MRAM crossbar memory systems have the potential to present significant area advantages (4 to 6F(2)) compared to CMOS-based systems. The scalability of these conductivity-switched RAM arrays is examined by establishing criteria for correct functionality based on the readout margin. Using a combined circuit theoretical modelling and simulation approach, the impact of both the device and interconnect architecture on the scalability of a conductivity-state memory system is quantified.
View Article and Find Full Text PDFReproducible negative differential resistance (NDR)-like switching behavior is observed in NanoCells. This behavior is attributed to the formation of filaments and clusters between the discontinuous gold films. Control experiments are performed by self-assembly of insulating molecules between the gold islands and conducting molecules on these islands.
View Article and Find Full Text PDFNanoCells are disordered arrays of metallic islands that are interlinked with molecules between micrometer-sized metallic input/output leads. In the past, simulations had been conducted showing that the NanoCells may function as both memory and logic devices that are programmable postfabrication. Reported here is the first assembly of a NanoCell with disordered arrays of molecules and Au islands.
View Article and Find Full Text PDF