Publications by authors named "Paul Finnon"

Ionizing radiation (IR) is a risk factor for acute myeloid leukemia (rAML). Murine rAMLs feature both hemizygous chromosome 2 deletions (Del2) and point mutations (R235) within the hematopoietic regulatory gene . We generated a heterozygous CBA R235 mouse (CBA) which develops AML with 100% incidence by ∼12 months old and shows a dose-dependent reduction in latency following X-irradiation.

View Article and Find Full Text PDF

Epidemiological studies have demonstrated an increased leukemia incidence following ionizing radiation exposure, but to date, the target cells and underlying mechanisms of radiation leukemogenesis remain largely unidentified. We engineered a mouse model carrying a different fluorescent marker on each chromosome 2, located inside the minimum deleted region occurring after radiation exposure and recognized as the first leukemogenic event. Using this tailored model, we report that following radiation exposure, more than half of asymptomatic CBA Sfpi1 mice presented with expanding clones of preleukemic hematopoietic cells harboring a hemizygous interstitial deletion of chromosome 2.

View Article and Find Full Text PDF

While the biological effects of high-dose-ionizing radiation on human health are well characterized, the consequences of low-dose radiation exposure remain poorly defined, even though they are of major importance for radiological protection. Lymphocytes are very radiosensitive, and radiation-induced health effects may result from immune cell loss and/or immune system impairment. To decipher the mechanisms of effects of low doses, we analyzed the modulation of the T-cell receptor gene repertoire in mice exposed to a single low (0.

View Article and Find Full Text PDF

Exposure to ionizing radiation increases the incidence of acute myeloid leukemia (AML), which has been diagnosed in Japanese atomic bombing survivors, as well as patients treated with radiotherapy. The genetic basis for susceptibility to radiation-induced AML is not well characterized. We previously identified a candidate murine gene for susceptibility to radiation-induced AML (rAML): C-terminal binding protein (CTBP)-interacting protein (CTIP)/retinoblastoma binding protein 8 (RBBP8).

View Article and Find Full Text PDF

hematopoietic stem cells (HSCs) have an intrinsic defect in their maintenance within the bone marrow (BM) niche which facilitates HSC transplantation without the absolute requirement of prior conditioning. Nevertheless, NOD mice have a significantly altered life span due to early development of thymic lymphomas, which compromises the ability to study the long-term fate of exogenous HSCs and their progeny. Here, we present data on the transplantation of HSCs into NOD gamma (NSG) mice to achieve long-term engraftment without prior conditioning.

View Article and Find Full Text PDF

The purpose of this study was to quantify the poorly understood radiation doses to murine bone marrow and blood from whole-body fluorine 18 ((18)F)-fluorodeoxyglucose (FDG) positron emission tomography (PET), by using specific biomarkers and comparing with whole body external low dose exposures. Groups of 3-5 mice were randomly assigned to 10 groups, each receiving either a different activity of (18)F-FDG: 0-37MBq or whole body irradiated with corresponding doses of 0-300mGy X-rays. Blood samples were collected at 24h and at 43h for reticulocyte micronucleus assays and QPCR analysis of gene expression in peripheral blood leukocytes.

View Article and Find Full Text PDF

Background: The identification of polymorphisms and/or genes responsible for an organism's radiosensitivity increases the knowledge about the cell cycle and the mechanism of the phenomena themselves, possibly providing the researchers with a better understanding of the process of carcinogenesis.

Aim: The aim of the study was to develop a data analysis strategy capable of discovering the genetic background of radiosensitivity in the case of small sample size studies.

Results: Among many indirect measures of radiosensitivity known, the level of radiation-induced chromosomal aberrations was used in the study.

View Article and Find Full Text PDF

Purpose: Modifications of gene expression following ionizing radiation (IR) exposure of cells in vitro and in vivo are well documented. However, little is known about the dose-responses of transcriptionally responsive genes, especially at low doses. In this study, we investigated these dose-responses and assessed inter-individual variability.

View Article and Find Full Text PDF

Background And Purpose: Identification of mechanisms of late normal tissue responses to curative radiotherapy that discriminate individuals with marked or mild responses would aid response prediction. This study aimed to identify differences in gene expression, apoptosis, residual DNA double strand breaks and chromosomal damage after in vitro irradiation of lymphocytes in a series of patients with marked (31 cases) or mild (28 controls) late adverse reaction to adjuvant breast radiotherapy.

Materials And Methods: Gene expression arrays, residual γH2AX, apoptosis, G2 chromosomal radiosensitivity and G0 micronucleus assay were used to compare case and control lymphocyte radiation responses.

View Article and Find Full Text PDF

Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G(0)-stage lymphocytes.

View Article and Find Full Text PDF

Ionizing radiation induces DNA Double-Strand Breaks (DSBs) which activate the ATM/CHEK2/p53 pathway leading to cell cycle arrest and apoptosis through transcription of genes including CDKN1A (p21) and BBC3 (PUMA). This pathway prevents genomic instability and tumorigenesis as demonstrated in heritable syndromes [e.g.

View Article and Find Full Text PDF

Purpose: To establish a panel of highly radiation responsive genes suitable for biological dosimetry and to explore inter-individual variation in response to ionising radiation exposure.

Materials And Methods: Analysis of gene expression in response to radiation was carried out using three independent techniques (Microarray, Multiplex Quantitative Real-Time Polymerase Chain Reaction (MQRT- PCR) and nCounter® Analysis System) in human dividing lymphocytes in culture and peripheral blood leukocytes exposed ex vivo from the same donors.

Results: Variations in transcriptional response to exposure to ionising radiation analysed by microarray allowed the identification of genes which can be measured accurately using MQRT PCR and another technique allowing direct count of mRNA copies.

View Article and Find Full Text PDF

Genetic factors are likely to affect individual cancer risk, but few quantitative estimates of heritability are available. Public health radiation protection policies do not in general take this potentially important source of variation in risk into account. Two surrogate cellular assays that relate to cancer susceptibility have been developed to gain an insight into the role of genetics in determining individual variation in radiosensitivity.

View Article and Find Full Text PDF

Purpose: To examine the hypothesis that lymphocyte telomere length may be predictive of both breast cancer susceptibility and severity of acute reactions to radiotherapy.

Materials And Methods: Peripheral blood lymphocyte cultures from breast cancer patients (with normal or severe skin reactions to radiotherapy) and normal individuals were assessed for in vitro radiosensitivity as measured by apoptosis, cell cycle delay and cytotoxicity. Telomere lengths were determined by a flow cytometric fluorescence in situ hybridization assay (FLOW-FISH).

View Article and Find Full Text PDF