Publications by authors named "Paul F Predki"

Small molecules, such as metabolites and hormones, interact with proteins to regulate numerous biological pathways, which are often aberrant in disease. Small molecule drugs have been successfully exploited to specifically perturb such processes and thereby, decrease and even eliminate disease progression. Although there are compelling reasons to fully characterize interactions of small molecules with all proteins from an organism for which an intended drug regimen is planned, currently available technologies are not yet up to this task.

View Article and Find Full Text PDF

Proper regulation of cell morphogenesis and migration by adhesion and growth-factor receptors requires Abl-family tyrosine kinases [1-3]. Several substrates of Abl-family kinase have been identified, but they are unlikely to mediate all of the downstream actions of these kinases on cytoskeletal structure. We used a human protein microarray to identify the actin-regulatory protein cortactin as a novel substrate of the Abl and Abl-related gene (Arg) nonreceptor tyrosine kinases.

View Article and Find Full Text PDF

The generation of large-scale data sets is a fundamental requirement of systems biology. But despite recent advances, generation of such high-coverage data remains a major challenge. We developed a pooling-deconvolution strategy that can dramatically decrease the effort required.

View Article and Find Full Text PDF

Antibody cross-reactivity can compromise interpretation of experiments and derail therapeutic antibody development. Standard techniques such as immunohistochemistry or Western analysis provide important but often inadequate approaches to assess antibody specificity. Protein microarrays are providing a new approach to rapidly characterize antibody cross-reactivity against 1,000s of proteins simultaneously.

View Article and Find Full Text PDF

Protein phosphorylation is estimated to affect 30% of the proteome and is a major regulatory mechanism that controls many basic cellular processes. Until recently, our biochemical understanding of protein phosphorylation on a global scale has been extremely limited; only one half of the yeast kinases have known in vivo substrates and the phosphorylating kinase is known for less than 160 phosphoproteins. Here we describe, with the use of proteome chip technology, the in vitro substrates recognized by most yeast protein kinases: we identified over 4,000 phosphorylation events involving 1,325 different proteins.

View Article and Find Full Text PDF

The increased use of antibodies as therapeutics, as well as the growing demand for large numbers of antibodies for high-throughput protein analyses, has been accompanied by a need for more specific antibodies. An array containing every protein for the relevant organism represents the ideal format for an assay to test antibody specificity since it allows the simultaneous screening of thousands of proteins in relatively normalized quantities. Indeed, the use of a yeast proleome array to profile the specificity of several antibodies directed against yeast proteins has recently been described.

View Article and Find Full Text PDF

Arrays of immobilized proteins have been developed for the discovery and characterization of protein functions ranging from molecular recognition to enzymatic activity. The success of these applications is highly dependent upon the maintenance of protein structure and function while in an immobilized state - a largely untested hypothesis. However, the immobilization of functional proteins is not without precedent.

View Article and Find Full Text PDF

Functional protein microarrays promise new approaches to address longstanding challenges in drug discovery and development, with applications ranging from target identification to clinical trial design. However, their widespread adoption will be contingent upon a robust ability to develop and manufacture arrays in support of these applications. This review will address the major areas of relevance to the development of functional protein microarrays; protein content, surface chemistry, manufacture and assay development.

View Article and Find Full Text PDF

Since its recent implementation at one of the world's largest high-throughput sequencing centers, the utility of MP-RCA for DNA sequencing has been thoroughly validated. However, applications of this technology extend far beyond DNA sequencing. While many of these applications have been explored in this chapter, the future will undoubtedly add to this growing list.

View Article and Find Full Text PDF

The manufacture and use of protein microarrays with correctly folded and functional content presents significant challenges. Despite this, the feasibility and utility of such undertakings are now clear, and exciting progress has recently been demonstrated in the areas of content generation, printing strategies and protein immobilization. More importantly, we are now beginning to enjoy the fruits of these efforts as functional protein microarrays are being increasingly employed for biological discovery purposes.

View Article and Find Full Text PDF

Although approximately 10,000 antibodies are available from commercial sources, antibody reagents are still unavailable for most proteins. Furthermore, new applications such as antibody arrays and monoclonal antibody therapeutics have increased the demand for more specific antibodies to reduce cross-reactivity and side effects. An array containing every protein for the relevant organism represents the ideal format for an assay to test antibody specificity, because it allows the simultaneous screening of thousands of proteins for possible cross-reactivity.

View Article and Find Full Text PDF

Draft sequencing is a rapid and efficient method for determining the near-complete sequence of microbial genomes. Here we report a comparative analysis of one complete and two draft genome sequences of the phytopathogenic bacterium, Xylella fastidiosa, which causes serious disease in plants, including citrus, almond, and oleander. We present highlights of an in silico analysis based on a comparison of reconstructions of core biological subsystems.

View Article and Find Full Text PDF

Xylella fastidiosa (Xf) causes wilt disease in plants and is responsible for major economic and crop losses globally. Owing to the public importance of this phytopathogen we embarked on a comparative analysis of the complete genome of Xf pv citrus and the partial genomes of two recently sequenced strains of this species: Xf pv almond and Xf pv oleander, which cause leaf scorch in almond and oleander plants, respectively. We report a reanalysis of the previously sequenced Xf 9a5c (CVC, citrus) strain and the two "gapped" Xf genomes revealing ORFs encoding critical functions in pathogenicity and conjugative transfer.

View Article and Find Full Text PDF