Publications by authors named "Paul F A Wright"

As interest in Australian native products continues to grow worldwide, Aboriginal and Torres Strait Islander peoples (First Peoples) are striving to be industry leaders in the production of their traditional foods that are being developed for commercial markets. To successfully gain market approval both within Australia and globally, food regulatory authorities require at least a documented history of safe use to indicate dietary safety. Moreover, many countries also require compositional analysis and safety data to further support their safe human consumption.

View Article and Find Full Text PDF

This study systematically investigated the effect of equal channel angular pressing (ECAP) on the microstructure, mechanical, corrosion, nano-tribological properties and biocompatibility of a newly developed β Ti-28Nb-35.4Zr (hereafter denoted TNZ) alloy. Results indicated that ECAP of the β TNZ alloy refined its microstructure by forming ultrafine grains without causing stress-induced phase transformation, leading to formation of a single β phase.

View Article and Find Full Text PDF

Agonism of the G protein-coupled bile acid receptor "Takeda G-protein receptor 5" (TGR5) aids in attenuating cholesterol accumulation due to atherosclerotic progression. Although mammalian bile compounds can activate TGR5, they are generally weak agonists, and more effective compounds need to be identified. In this study, two marine bile compounds (5β-scymnol and its sulfate) were compared with mammalian bile compounds deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) using an model of TGR5 agonism.

View Article and Find Full Text PDF

Maternal diet is critical for offspring development and long-term health. Here we investigated the effects of a poor maternal diet pre-conception and during pregnancy on metabolic outcomes and the developing hypothalamus in male and female offspring at birth. We hypothesised that offspring born to dams fed a diet high in fat and sugar (HFSD) peri-pregnancy will have disrupted metabolic outcomes.

View Article and Find Full Text PDF

Background: Cholesterol crystallization within an atherosclerotic plaque significantly contributes to the acceleration of plaque rupture - a problematic event due to the current lack of specific treatments to prevent such formations. Modelling this pathogenic process is also difficult due to the lack of suitable experimental models that enable quantitative analysis of crystal formation and bioactivity screening of potential therapeutic compounds.

Aim: To develop an in vitro human cell model of cholesterol crystallization combined with an imaging system that incorporates both quantitative analysis and real-time continuous imaging of cholesterol crystal formation.

View Article and Find Full Text PDF

Magnesium (Mg) and its alloys are considered promising biodegradable implant materials because of their strength and natural degradation in the human body. However, the high corrosion rate of pure Mg in the physiological environment leads to rapid degradation before adequate bone healing. This mismatch between bone healing and the degradation of Mg implants supports the development of new Mg alloys with the addition of other suitable alloying elements in order to achieve simultaneously high corrosion resistance and desirable mechanical properties.

View Article and Find Full Text PDF

The interplay between bone formation by osteoblasts and bone resorption by osteoclasts has a critical effect on bone remodelling processes, and resultant bone quality. Bone scaffolds combined with anti-resorptive bisphosphonate drugs are a promising approach to achieving bone regeneration. Here, we have examined the synergistic effects of the bisphosphonate alendronate (ALD) coated onto calcium phosphate (CaP) modified, sintered bioactive glass 45S5 (BG) scaffolds, on osteoblast stimulation and osteoclast inhibition.

View Article and Find Full Text PDF

The bile alcohol 5β-scymnol ([24R]-(+)-5β-cholestan-3α,7α,12α,24,26,27-hexol) is a therapeutic nutraceutical derived from marine sources, however very little is known about its potential for biotransformation as a xenobiotic in higher vertebrates. In this study, biotransformation products of scymnol catalysed by liver microsomes isolated from normal and streptozotocin (STZ)-treated male Wistar rats were characterised by liquid chromatography-tandem mass spectroscopy (LC-MSMS). In order of increasing polarity relative to the reversed phase sorbent, structural assignments were made for four biotransformation products, namely 3-oxoscymnol (5β-cholestan-3-one-7α,12α,24,26,27-pentol); 7-oxoscymnol (5β-cholestan-7-one-3α,12α,24,26,27-pentol); 3β-scymnol (5β-cholestan-3β,7α,12α,24,26,27-hexol) and 6β-hydroxyscymnol (5β-cholestan-3α,6β,7α,12α,24,26,27-heptol).

View Article and Find Full Text PDF

The silicate glass 45S5 Bioglass® (BG) is a potential scaffold material for bone regeneration because of its excellent bioactivity, biocompatibility and ability to form a strong bond with bone tissues, via the formation of an apatite layer on its surface. The evaluation of in vitro bioactivity in physiological body fluids, whilst challenging, can offer some insights for developing the bone-bonding ability of these glasses in vivo. In this study, we investigated the influence of three different cell culture and tissue fluid-like solutions on the dissolution and calcium-phosphate (CaP) based re-precipitation behaviour at the glass-liquid interface.

View Article and Find Full Text PDF

The findings of a new study by Mohammed et al. show that after repeated hourly or daily topical applications typically used for sunscreens, zinc oxide nanoparticles do not penetrate into the viable epidermis or cause toxicity in human skin. This important study confirms that the known benefits of using zinc oxide nanoparticles in sunscreen clearly outweigh the perceived risks of using nanosunscreens.

View Article and Find Full Text PDF

Scaffolds made from 45S5 Bioglass® ceramic (BG) show clinical potential in bone regeneration due to their excellent bioactivity and ability to bond to natural bone tissue. However, porous BG scaffolds are limited by their mechanical integrity and by the substantial volume contractions occurring upon sintering. This study examines stereolithographic (SLA) methods to fabricate mechanically robust and porous Bioglass®-based ceramic scaffolds, with regular and interconnected pore networks and using various computer-aided design architectures.

View Article and Find Full Text PDF

An important part of assessing the toxic potential of nanoparticles for specific applications should be the direct comparison of biological activities with those of alternative materials for the same application. Nanoparticulate inorganic ultraviolet (UV) filters, such as zinc oxide (ZnO), are commonly incorporated into transparent sunscreen and cosmetic formulations. However, concerns have been raised about potential unwanted effects, despite their negligible skin penetration and inherent advantages over organic chemical UV-filters.

View Article and Find Full Text PDF

The shark bile alcohol, 5β-scymnol, protects mice from the hepatotoxic effects of paracetamol (APAP) overdose. To elucidate the hepatoprotective structural moiety of scymnol, we compared its effect with that of its analogue and natural bile salt, sodium scymnol sulfate, in a clinically relevant model of APAP-induced toxicity. Exposure of healthy male Swiss mice to a toxic overdose of APAP (350 mg/kg, ip) significantly increased serum hepatocellular enzyme activities, decreased hepatocellular glutathione (GSH) levels, and induced severe centrilobular hepatocellular necrosis.

View Article and Find Full Text PDF

Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating.

View Article and Find Full Text PDF

Oxidative damage to cells and tissues from free radicals induced by ultraviolet (UV) irradiation can be attenuated by sunscreen components, such as ZnO and TiO2 nanoparticles (NPs). Although it is known that reactive oxygen species (ROS) are generated by cells upon exposure to ZnO and TiO2 NPs, it is unknown to what extent the amount generated is altered with UV co-exposure. As it is a critical component for determining the relative risk of these NPs when used in sunscreen formulations, we have investigated ROS generation by these NPs in human THP-1 monocyte immune cells following UVA co-exposure.

View Article and Find Full Text PDF

The usefulness of zinc oxide (ZnO) nanoparticles has led to their wide distribution in consumer products, despite only a limited understanding of how this nanomaterial behaves within biological systems. From a nanotoxicological viewpoint the interaction(s) of ZnO nanoparticles with cells of the immune system is of specific interest, as these nanostructures are readily phagocytosed. In this study, rapid scanning X-ray fluorescence microscopy was used to assay the number ZnO nanoparticles associated with ∼1000 individual THP-1 monocyte-derived human macrophages.

View Article and Find Full Text PDF

Although zinc oxide (ZnO) nanoparticles (NPs) have been widely formulated in sunscreens, the relationship between reactive oxygen species (ROS) generation induced by these particles, zinc ions, and cytotoxicity is not clearly understood. This study explores whether these factors can be accurately quantified and related. The study demonstrates a strong correlation between ZnO NP-induced cytotoxicity and free intracellular zinc concentration (R (2) = .

View Article and Find Full Text PDF

Zinc ions generate a range of poorly soluble Zn-containing nanoparticles when added to commonly used mammalian cell culture media. The formation of these nanoparticles confounds the use of soluble Zn salts as positive controls during cytotoxicity testing of other Zn-containing nanoparticles, such as ZnO. These nanoprecipitates can either be crystalline or amorphous and vary in composition depending upon the concentration of Zn(II) within the medium.

View Article and Find Full Text PDF

Significant public and scientific concerns remain for the use of nanoparticles (NPs) in commercial products, particularly those applied topically for skin care. There are currently a range of metal oxides formulated into many sunscreens that are present at the nanoscale. In this study, we sought to determine the effect of the size and dispersion of one type of these NPs (zinc oxide) on immune cell function and cytotoxicity for human macrophages and monocytes, which are key cells for particle and debris clearance in the skin.

View Article and Find Full Text PDF

A new and sensitive high performance liquid chromatography (HPLC) separation procedure coupled with tandem mass spectroscopy (MS and MS(2)) detection was developed to identify for the first time the oxidation products of 5β-scymnol [(24R)-(+)-5β-cholestan-3α,7α,12α,24,26,27-hexol] catalysed by bacterial hydroxysteroid dehydrogenase (HSD) reactions in vitro. The authentic scymnol (MW 468) standard yielded a protonated molecular ion [M+H](+) at m/z 469 Da, and higher mass adduct ions attributed to [M+NH(4)](+) (m/z 486), [M+H+CH(3)OH](+) (m/z 501) and [M+H+CH(3)COOH](+) (m/z 530). (24R)-(+)-5β-Cholestan-3-one-7α,12α,24,26,27-pentol (3-oxoscymnol, m/z 467 Da, relative retention time (RRT)=0.

View Article and Find Full Text PDF

Lipid-rich fractions from the flesh tissue of Mytilus edulis were obtained by solvent extraction and chromatographic separation, and tested for anti-inflammatory (AI) activity in vitro and in vivo. Inhibition of leukotriene production by isolated human neutrophils in response to calcium ionophore stimulation in the presence of exogenous arachidonic acid substrate was demonstrated for the hydrolysed triglyceride fraction of the crude lipid extract. This fraction was subsequently tested for in vivo AI activity using the mycobacterial adjuvant-induced polyarthritis rat model.

View Article and Find Full Text PDF

Purpose: Alternative cell sources have been sought for the treatment of liver diseases, since liver cells are in short supply for cell transplantation. Although bone marrow-derived cells have been investigated as an alternative cell source, few studies have demonstrated long-term disease correction. Here we examined bone marrow stem cell transplantation into the toxic milk (tx) mouse model for Wilson's disease, a mild liver disease characterized by hepatic copper accumulation.

View Article and Find Full Text PDF

Wilson's disease carriers constitute 1% of the human population. It is unknown whether Wilson's disease carriers are at increased susceptibility to copper overload when exposed to chronically high levels of ingested copper. This study investigated the effect of chronic excess copper in drinking water on the heterozygous form of the Wilson's disease mouse model--the toxic milk (tx) mouse.

View Article and Find Full Text PDF

Kunzea ericoides is a member of the Myrtle group of tea trees. Leaf and twig material of K. ericoides was extracted with different solvents to afford terpene (including the essential oil), flavonoid and lipid classes (but no alkaloid class), which were subsequently screened for antibacterial, antitumour, cytotoxic, antioxidant and antiinflammatory activity.

View Article and Find Full Text PDF