Publications by authors named "Paul Expert"

Background: Catatonia, as a transdiagnostic construct, manifests across various psychiatric and non-psychiatric conditions. Understanding how symptom variations impact the catatonia construct and differ across primary diagnoses (schizophrenia, bipolar disorder, unipolar depression, and neurological/metabolic/immunological condition) is essential to refine diagnostic and therapeutic approaches. This study aims to compare the symptom networks and centrality measures of these diagnoses.

View Article and Find Full Text PDF

Simplicial Kuramoto models have emerged as a diverse and intriguing class of models describing oscillators on simplices rather than nodes. In this paper, we present a unified framework to describe different variants of these models, categorized into three main groups: "simple" models, "Hodge-coupled" models, and "order-coupled" (Dirac) models. Our framework is based on topology and discrete differential geometry, as well as gradient systems and frustrations, and permits a systematic analysis of their properties.

View Article and Find Full Text PDF

In recent years, brain imaging studies have begun to shed light on the neural correlates of physiologically-reversible altered states of consciousness such as deep sleep, anesthesia, and psychedelic experiences. The emerging consensus is that normal waking consciousness requires the exploration of a dynamical repertoire enabling both global integration i.e.

View Article and Find Full Text PDF

The architectural design of hospitals worldwide is centred around individual departments, which require the movement of patients between wards. However, patients do not always take the simplest route from admission to discharge, but can experience convoluted movement patterns, particularly when bed availability is low. Few studies have explored the impact of these rarer, atypical trajectories.

View Article and Find Full Text PDF

Introduction: Emergency department (ED) attendances fell across the UK after the 'lockdown' introduced on 23rd March 2020 to limit the spread of coronavirus disease 2019 (COVID-19). We hypothesised that reductions would vary by patient age and disease type. We examined pre- and in-lockdown ED attendances for two COVID-19 unrelated diagnoses: one likely to be affected by lockdown measures (gastroenteritis), and one likely to be unaffected (appendicitis).

View Article and Find Full Text PDF

Traditional classification tasks learn to assign samples to given classes based solely on sample features. This paradigm is evolving to include other sources of information, such as known relations between samples. Here, we show that, even if additional relational information is not available in the dataset, one can improve classification by constructing geometric graphs from the features themselves, and using them within a Graph Convolutional Network.

View Article and Find Full Text PDF

The study of complex systems deals with emergent behavior that arises as a result of nonlinear spatiotemporal interactions between a large number of components both within the system, as well as between the system and its environment. There is a strong case to be made that neural systems as well as their emergent behavior and disorders can be studied within the framework of complexity science. In particular, the field of neuroimaging has begun to apply both theoretical and experimental procedures originating in complexity science-usually in parallel with traditional methodologies.

View Article and Find Full Text PDF

Background: Intrahospital transfers have become more common as hospital staff balance patient needs with bed availability. However, this may leave patients more vulnerable to potential pathogen transmission routes via increased exposure to contaminated surfaces and contacts with individuals.

Objective: This study aimed to quantify the association between the number of intrahospital transfers undergone during a hospital spell and the development of a hospital-acquired infection (HAI).

View Article and Find Full Text PDF

We show that the classification performance of graph convolutional networks (GCNs) is related to the alignment between features, graph, and ground truth, which we quantify using a subspace alignment measure (SAM) corresponding to the Frobenius norm of the matrix of pairwise chordal distances between three subspaces associated with features, graph, and ground truth. The proposed measure is based on the principal angles between subspaces and has both spectral and geometrical interpretations. We showcase the relationship between the SAM and the classification performance through the study of limiting cases of GCNs and systematic randomizations of both features and graph structure applied to a constructive example and several examples of citation networks of different origins.

View Article and Find Full Text PDF

Understanding how gene expression translates to and affects human behavior is one of the ultimate goals of neuroscience. In this paper, we present a pipeline based on Mapper, a topological simplification tool, to analyze gene co-expression data. We first validate the method by reproducing key results from the literature on the Allen Human Brain Atlas and the correlations between resting-state fMRI and gene co-expression maps.

View Article and Find Full Text PDF

Topology, in its many forms, describes relations. It has thus long been a central concept in neuroscience, capturing structural and functional aspects of the organization of the nervous system and their links to cognition. Recent advances in computational topology have extended the breadth and depth of topological descriptions.

View Article and Find Full Text PDF

Psychiatric disorders share the same pattern of longitudinal evolution and have courses that tend to be chronic and recurrent. These aspects of chronicity and longitudinal evolution are currently studied under the deficit-oriented neuroprogression framework. Interestingly, considering the plasticity of the brain, it is also necessary to emphasize the bidirectional nature of neuroprogression.

View Article and Find Full Text PDF

Growing evidence from the dynamical analysis of functional neuroimaging data suggests that brain function can be understood as the exploration of a repertoire of metastable connectivity patterns ('functional brain networks'), which potentially underlie different mental processes. The present study characterizes how the brain's dynamical exploration of resting-state networks is rapidly modulated by intravenous infusion of psilocybin, a tryptamine psychedelic found in "magic mushrooms". We employed a data-driven approach to characterize recurrent functional connectivity patterns by focusing on the leading eigenvector of BOLD phase coherence at single-TR resolution.

View Article and Find Full Text PDF

Neurobiological models to explain vulnerability of major depressive disorder (MDD) are scarce and previous functional magnetic resonance imaging studies mostly examined "static" functional connectivity (FC). Knowing that FC constantly evolves over time, it becomes important to assess how FC dynamically differs in remitted-MDD patients vulnerable for new depressive episodes. Using a recently developed method to examine dynamic FC, we characterized re-emerging FC states during rest in 51 antidepressant-free MDD patients at high risk of recurrence (≥2 previous episodes), and 35 healthy controls.

View Article and Find Full Text PDF

The analysis of structural and functional neuroimaging data using graph theory has increasingly become a popular approach for visualising and understanding anatomical and functional relationships between different cerebral areas. In this work we applied a network-based approach for brain PET studies using population-based covariance matrices, with the aim to explore topological tracer kinetic differences in cross-sectional investigations. Simulations, test-retest studies and applications to cross-sectional datasets from three different tracers ([F]FDG, [F]FDOPA and [C]SB217045) and more than 400 PET scans were investigated to assess the applicability of the methodology in healthy controls and patients.

View Article and Find Full Text PDF

The concept of "emergence" has become commonplace in the modelling of complex systems, both natural and man-made; a functional property" emerges" from a system when it cannot be readily explained by the properties of the system's sub-units. A bewildering array of adaptive and sophisticated behaviours can be observed from large ensembles of elementary agents such as ant colonies, bird flocks or by the interactions of elementary material units such as molecules or weather elements. Ultimately, emergence has been adopted as the ontological support of a number of attempts to model brain function.

View Article and Find Full Text PDF

Background: A wide range of neuropsychiatric disorders, from schizophrenia to drug addiction, involve abnormalities in both the mesolimbic dopamine system and the cortical salience network. Both systems play a key role in the detection of behaviorally relevant environmental stimuli. Although anatomical overlap exists, the functional relationship between these systems remains unknown.

View Article and Find Full Text PDF

Many collective phenomena in Nature emerge from the -partial- synchronisation of the units comprising a system. In the case of the brain, this self-organised process allows groups of neurons to fire in highly intricate partially synchronised patterns and eventually lead to high level cognitive outputs and control over the human body. However, when the synchronisation patterns are altered and hypersynchronisation occurs, undesirable effects can occur.

View Article and Find Full Text PDF

There is recent evidence that the XY spin model on complex networks can display three different macroscopic states in response to the topology of the network underpinning the interactions of the spins. In this work we present a way to characterize the macroscopic states of the XY spin model based on the spectral decomposition of time series using topological information about the underlying networks. We use three different classes of networks to generate time series of the spins for the three possible macroscopic states.

View Article and Find Full Text PDF

In recent years, the application of network analysis to neuroimaging data has provided useful insights about the brain's functional and structural organization in both health and disease. This has proven a significant paradigm shift from the study of individual brain regions in isolation. Graph-based models of the brain consist of vertices, which represent distinct brain areas, and edges which encode the presence (or absence) of a structural or functional relationship between each pair of vertices.

View Article and Find Full Text PDF

Introduction: Brain-wide mRNA mappings offer a great potential for neuroscience research as they can provide information about system proteomics. In a previous work we have correlated mRNA maps with the binding patterns of radioligands targeting specific molecular systems and imaged with positron emission tomography (PET) in unrelated control groups. This approach is potentially applicable to any imaging modality as long as an efficient procedure of imaging-genomic matching is provided.

View Article and Find Full Text PDF

The main finding of this paper is a novel avalanche-size exponent τ ≈ 1.87 when the generalised sandpile dynamics evolves on the real-world Japanese inter-firm network. The topology of this network is non-layered and directed, displaying the typical bow tie structure found in real-world directed networks, with cycles and triangles.

View Article and Find Full Text PDF

A variety of anatomical and physiological evidence suggests that the brain performs computations using motifs that are repeated across species, brain areas, and modalities. The computational architecture of cortex, for example, is very similar from one area to another and the types, arrangements, and connections of cortical neurons are highly stereotyped. This supports the idea that each cortical area conducts calculations using similarly structured neuronal modules: what we term canonical computational motifs.

View Article and Find Full Text PDF
Temporal stability of network partitions.

Phys Rev E Stat Nonlin Soft Matter Phys

August 2014

We present a method to find the best temporal partition at any time scale and rank the relevance of partitions found at different time scales. This method is based on random walkers coevolving with the network and as such constitutes a generalization of partition stability to the case of temporal networks. We show that, when applied to a toy model and real data sets, temporal stability uncovers structures that are persistent over meaningful time scales as well as important isolated events, making it an effective tool to study both abrupt changes and gradual evolution of a network mesoscopic structures.

View Article and Find Full Text PDF

Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's 'functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles.

View Article and Find Full Text PDF