Publications by authors named "Paul E Shaw"

Luminescence-based sensing provides a method for the rapid detection of nerve agents. Previous approaches have generally focused on sensing materials containing a nucleophilic group that can react with the electrophilic phosphorus atom found in nerve agents. Herein we report an alternative approach for the detection of phosphonofluoridate-based G-series nerve agents that utilizes the fact they contain hydrogen fluoride.

View Article and Find Full Text PDF

Efficient detection of chemical analytes using fluorescence-based sensors necessitates an in-depth understanding of the physical interaction between the analyte molecules and the sensor films. This study explores the interplay between the thermal properties of a series of triphenylamine-centered fluorescent dendrimers with different glass transition temperatures () for detecting nitroaromatic explosives. When exposed to 4-nitrotoluene (pNT) vapors, biphasic diffusion kinetics were observed for all the dendrimers, corresponding to Super Case II kinetics, suggesting rapid film swelling during initial analyte uptake.

View Article and Find Full Text PDF

The advent of small molecule non-fullerene acceptor (NFA) materials for organic photovoltaic (OPV) devices has led to a series of breakthroughs in performance and device lifetime. The most efficient OPV devices have a combination of electron donor and acceptor materials that constitute the light absorbing layer in a bulk heterojunction (BHJ) structure. For many BHJ-based devices reported to date, the weight ratio of donor to acceptor is near equal.

View Article and Find Full Text PDF

Film-based fluorescence sensors have been demonstrated to be powerful tools for real-time detection of trace chemical vapors. While explosive vapor detection fluorescence quenching has been widely explored, fluorescence-based real-time detection and identification of illicit drug vapors remains a challenge. Here, we report two perylene diimide-based sensing materials, and , incorporating 2,2-dihexyloctanyl chains and 4-[tris(4-{-butyl}phenyl)methyl]phenyl moieties at the imide positions, respectively.

View Article and Find Full Text PDF

Three-dimensional (3D) perovskite solar cells (PSCs) containing additives capable of forming two-dimensional (2D) structures in neat films have attracted attention due to their ability to enhance power conversion efficiency (PCE) in combination with improved operational stability. Herein, a newly designed fluorinated ammonium salt, 2-(perfluorophenyl)ethanaminium bromide:chloride (FEABr:Cl), is introduced into CsMAFAPbI-based PSCs with a standard n-i-p architecture. FEABr:Cl was used as an additive in the tin(IV) oxide (SnO) electron transporting layer (ETL) as well as a surface treatment for the perovskite film.

View Article and Find Full Text PDF

Luminescence-based sensing has been demonstrated to be a powerful method for rapid trace detection of chemical vapors (analytes). Analyte diffusion has been shown to be the critical factor for real-time luminescence-based detection of explosive analytes via photoinduced electron transfer in amorphous films of conjugated polymers and dendrimers. However, similar studies to determine the critical factors for sensing have not been performed on materials that employ photoinduced hole transfer (PHT) to detect low electron affinity analytes such as illicit drugs.

View Article and Find Full Text PDF

In-field rapid and reliable identification of nerve agents is critical for the protection of Defence and National Security personnel as well as communities. Fluorescence-based detectors can be portable and provide rapid detection of chemical threats. However, most current approaches cannot differentiate between dilute vapors of nerve agent classes and are susceptible to false positives due to the presence of common acids.

View Article and Find Full Text PDF

The strategy of using a bulk-heterojunction light-absorbing layer has led to the most efficient organic solar cells. However, optimising the blend morphology to maximise light absorption, charge generation and extraction can be challenging. Homojunction devices containing a single component have the potential to overcome the challenges associated with bulk heterojunction films.

View Article and Find Full Text PDF

A family of first-generation dendrimers containing 3,5-bis(carbazolyl)phenyl dendrons attached to a green emissive -tris(2-phenylpyridyl)iridium(III) core were prepared. The solubility of the dendrimers was imparted by the attachment of -butyl surface groups to the carbazole moieties. The dendrimers differed in the number of dendrons attached to each ligand (one or two dendrons) as well as the degree of rotational restriction within the dendrons.

View Article and Find Full Text PDF

p-Type inorganic nickel oxide (NiOx) exhibits high transparency, tunable-optoelectronic properties, and a work function () that is potentially suitable for hole extraction in inverted perovskite solar cells (PSCs). However, NiOx films possess surface defects that lead to high interfacial recombination and an energy offset with the ionization potential of the perovskite. Herein, we show that fluorinated 3-(2,3,4,5,6-pentafluorophenyl)propan-1-aminium iodide (FPAI) can be used to modify the electronic properties of the NiOx anode interlayer.

View Article and Find Full Text PDF

We study the effect of (2,3,4,5,6-pentafluorophenyl)alkylamine additives with differing alkyl chain lengths (methyl, ethyl, and -propyl) on the performance of methylammonium lead triiodide (MAPbI) perovskite solar cells. The results show that the length of the alkyl chain between the 2,3,4,5,6-pentafluorophenyl group and ammonium moiety has a critical effect on the perovskite film structure and subsequent device performance. The 2,3,4,5,6-pentafluorophenyl ammonium additive with the shortest linking group (a methylene unit), namely (2,3,4,5,6-pentafluorophenyl)methylammonium iodide, was found to be distributed throughout the bulk of the perovskite film with a 2D phase only being observable at high concentrations (>30 mol%).

View Article and Find Full Text PDF

A common feature of fluorescent sensing materials for detecting chemical warfare agents (CWAs) and simulants is the presence of nitrogen-based groups designed to nucleophilically displace a phosphorus atom substituent, with the reaction causing a measurable fluorescence change. However, such groups are also basic and so sensitive to acid. In this study we show it is critical to disentangle the response of a candidate sensing material to acid and CWA simulant.

View Article and Find Full Text PDF

Efficient and stable perovskite solar cells with a simple active layer are desirable for manufacturing. Three-dimensional perovskite solar cells are most efficient but need to have improved environmental stability. Inclusion of larger ammonium salts has led to a trade-off between improved stability and efficiency, which is attributed to the perovskite films containing a two-dimensional component.

View Article and Find Full Text PDF

Multication metal-halide perovskites exhibit desirable performance and stability, compared to their monocation counterparts. However, the study of the photophysical properties and the nature of defect states in these materials is still a challenging and ongoing task. Here, we study bulk and interfacial energy loss mechanisms in solution-processed MAPbI (MAPI) and (CsPbI)[(FAPbI)(MAPbBr)] (triple cation) perovskite solar cells using absolute photoluminescence (PL) measurements.

View Article and Find Full Text PDF

Organophosphorus (OP)-based nerve agents are extremely toxic and potent acetylcholinesterase inhibitors and recent attacks involving nerve agents highlight the need for fast detection and intervention. Fluorescence-based detection, where the sensing material undergoes a chemical reaction with the agent causing a measurable change in the luminescence, is one method for sensing and identifying nerve agents. Most studies use the simulants diethylchlorophosphate and di-iso-propylfluorophosphate to evaluate the performance of sensors due to their reduced toxicity relative to OP nerve agents.

View Article and Find Full Text PDF

Incorporation of as prepared single-walled carbon nanotubes (SWCNTs) into the electron transporting layer (ETL) is an effective strategy to enhance the photovoltaic performance of perovskite solar cells (PSCs). However, the fundamental role of the SWCNT electrical types in the PSCs is not well understood. Herein, we prepared semiconducting (s-) and metallic (m-) SWCNT families and integrated them into TiO photoelectrodes of the PSCs.

View Article and Find Full Text PDF

Sensing of TATP vapours the decomposition product, hydrogen peroxide, was achieved using a fluorescence "turn-on" mechanism through conversion of boronate esters to phenoxides under basic conditions in solid-state films. High sensitivity was achieved with two new fluorenylboronate esters comprising either 2,4-difluorophenyl or 4-(trifluoromethyl)phenyl substituents. The key to the sensitivity was the fact that the phenoxide anion products from the hydrogen peroxide oxidation absorbed at longer wavelengths than the starting boronate esters.

View Article and Find Full Text PDF

Fluorenylboronate ester chromophore-based thin films were investigated for the detection of triacetone triperoxide (TATP) vapors via the decomposition product, hydrogen peroxide. Sensing with a high level of sensitivity was achieved using a fluorescence "turn-on" mechanism based on the significant shifts in the absorption and photoluminescence spectra that occurs when the boronate esters were converted to phenoxides by hydrogen peroxide under basic conditions. The addition of an organic base was found to be critical for achieving fast conversion reactions and the formation of the phenoxide anions.

View Article and Find Full Text PDF

PNNT has been prepared as a polymeric electron acceptor for organic solar cells. The polymer has an A-A'-A acceptor motif linked alternatively with thiophene and vinyl moieties. The A'-unit is a naphthalene diimide, while the A groups are thiazoles.

View Article and Find Full Text PDF

Fluorescence-based detection of explosive analytes requires an understanding of the nature of the excited state responsible for the luminescence response of a sensing material. Many measurements are carried out to elucidate the fundamental photophysical properties of an emissive material in solution. However, simple transfer of the understanding gained from the solution measurements to the solid-state can lead to errors.

View Article and Find Full Text PDF

Time-resolved quartz crystal microbalance with in situ fluorescence measurements are used to monitor the sorption of the nitroaromatic (explosive) vapor, 2,4-dinitrotoluene (DNT) into a porous pentiptycene-containing poly(phenyleneethynylene) sensing film. Correlation of the nitroaromatic mass uptake with fluorescence quenching shows that the analyte diffusion follows the Case-II transport model, a film-swelling-limited process, in which a sharp diffusional front propagates at a constant velocity through the film. At a low vapor pressure of DNT of ≈16 ppb, the analyte concentration in the front is sufficiently high to give an average fluorophore-analyte separation of ≈1.

View Article and Find Full Text PDF

Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration.

View Article and Find Full Text PDF

Photocurrent generation in organic bulk heterojunction (BHJ) solar cells is most commonly understood as a process which predominantly involves photoexcitation of the lower ionization potential species (donor) followed by electron transfer to the higher electron affinity material (acceptor) [i.e., photoinduced electron transfer (PET), which we term Channel I].

View Article and Find Full Text PDF

A solution-processable dibromoindigo with an alkyoxyphenyl solubilizing group is developed and used as a new electron acceptor in organic photodiodes. The solution-processed fullerene-free organic photodiodes show an almost spectrally flat response with a high responsivity (0.4 A W(-1)) and a high detectivity (1 × 10(12) Jones).

View Article and Find Full Text PDF

Unambiguous and selective standoff (non-contact) infield detection of nitro-containing explosives and taggants is an important goal but difficult to achieve with standard analytical techniques. Oxidative fluorescence quenching is emerging as a high sensitivity method for detecting such materials but is prone to false positives—everyday items such as perfumes elicit similar responses. Here we report thin films of light-emitting dendrimers that detect vapours of explosives and taggants selectively—fluorescence quenching is not observed for a range of common interferents.

View Article and Find Full Text PDF