Publications by authors named "Paul E Lyon"

For three decades airborne laser-induced fluorescence has demonstrated value for chlorophyll biomass retrieval in wide-area oceanic field experiments, satellite validation, and algorithm development. A new chlorophyll biomass retrieval theory is developed using laser-induced and water Raman normalized fluorescence of both (a) chlorophyll and (b) chromophoric dissolved organic matter (CDOM). This airborne lidar retrieval theory is then independently confirmed by chlorophyll biomass obtained from concurrent (1) ship-cruise retrievals, (2) satellite inherent optical property (IOP) biomass retrievals, and (3) satellite standard band-ratio chlorophyll biomass retrievals.

View Article and Find Full Text PDF

In the upper layer of the global ocean, 2082 in situ chlorophyll biomass values (Chl) are retrieved by concurrent satellite-derived inherent optical properties (IOP). It is found that (1) the phytoplankton absorption coefficient IOP alone does not provide satisfactory (Chl) retrieval; (2) the chromophoric dissolved organic matter (CDOM) absorption coefficient IOP must also be used to obtain satisfactory retrieval through (Chl) alpha a ph + pa CDOM where p is a constant and a ph and aCDOM are, respectively, the phytoplankton and CDOM absorption coefficients; (3) the IOP-based (Chl) retrieval performance is comparable to standard satellite reflectance ratio retrievals (that have CDOM absorption intrinsically embedded within them); (4) inclusion of the total backscattering coefficient IOP does not contribute significantly to (Chl) retrieval; and (5) the new IOP-based algorithm may provide the possibility for future research to establish the actual role of extracellular CDOM from all sources in the intracellular production of chlorophyll biomass.

View Article and Find Full Text PDF

The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra spacecraft contains spectral bands that allow retrieval of solar-induced phytoplankton chlorophyll fluorescence emission radiance. Concurrent airborne laser-induced (and water-Raman normalized) phytoplankton chlorophyll fluorescence data is used to successfully validate the MODIS chlorophyll fluorescence line height (FLH) retrievals within Gulf Stream, continental slope, shelf, and coastal waters of the Middle Atlantic Bight portion of the western North Atlantic Ocean for 11 March 2002. Over the entire approximately 480-km flight line a correlation coefficient of r2 = 0.

View Article and Find Full Text PDF