Publications by authors named "Paul E Luner"

Purpose: The purpose of this work is to evaluate the interrelationship of microstructure, properties, and dissolution performance for amorphous solid dispersions (ASDs) prepared using different methods.

Methods: ASD of GDC-0810 (50% w/w) with HPMC-AS was prepared using methods of spray drying and co-precipitation via resonant acoustic mixing. Microstructure, particulate and bulk powder properties, and dissolution performance were characterized for GDC-0810 ASDs.

View Article and Find Full Text PDF

Assessment and understanding of changes in particle size of active pharmaceutical ingredients (API) and excipients as a function of solid dosage form processing is an important but under-investigated area that can impact drug product quality. In this study, X-ray microscopy (XRM) was investigated as a method for determining the in situ particle size distribution of API agglomerates and an excipient at different processing stages in tablet manufacturing. An artificial intelligence (AI)-facilitated XRM image analysis tool was applied for quantitative analysis of thousands of individual particles, both of the API and the major filler component of the formulation, microcrystalline cellulose (MCC).

View Article and Find Full Text PDF

This study examined the use of focused beam reflectance measurement (FBRM) for qualitative and quantitative analysis of pharmaceutical suspensions with particular application to toxicology supply preparations for use in preclinical studies. Aqueous suspensions of ibuprofen were used as prototype formulations. Initial experiments were conducted to examine the effects of operational conditions including FBRM probe angle, probe location, and mixing (method and rate of mixing) on the FBRM analysis.

View Article and Find Full Text PDF

The objective of this study was to develop an artificial stomach-duodenum (ASD) dissolution model as an in vitro evaluation tool that would simulate the gastrointestinal physiology of gastric pH-reduced dogs as a method to assess formulations for a poorly soluble free acid compound with ng/mL solubility. After establishing the ASD model with well-controlled duodenum pH, 5 formulations each applying different solubilization principles were developed and their performance in the ASD model and in vivo in dogs was evaluated. Excellent correlations were obtained between dog area under the curve (AUC) and ASD AUC of 5 formulations evaluated with simulated intestinal fluid (r = 0.

View Article and Find Full Text PDF

Jenike's approach to hopper design for a large-scale (3150 L) conical hopper was applied to pharmaceutical powders to evaluate flow issues, such as funnel flow or cohesive arching. Seven grades of microcrystalline cellulose (MCC) and six powder blends were tested. A Schulze Ring Shear Tester measured the flow function, wall friction (using stainless steel coupons with a #2B or #8 finish) and compressibility.

View Article and Find Full Text PDF

The objective of this study was to investigate the capability of near-infrared spectroscopy (NIRS) to determine crystallinity in processed sucrose using a common set of calibration standards derived from binary physical mixtures. NIRS was applied as a primary method using binary mixtures of amorphous and crystalline standards to predict crystallinity in sucrose that was either rendered partially amorphous by milling, partially recrystallized from the amorphous phase, or amorphous lyophiles annealed to induce recrystallization. Crystallinity prediction in the case of milled crystalline and recrystallized amorphous sucrose was feasible using the two-state binary calibration mixtures applying a univariate model.

View Article and Find Full Text PDF

The purpose of this study was to investigate the impact of processing, API loading, and formulation composition on the content uniformity of low-dose tablets made using direct compression (DC) and roller compaction (RC) methods at 1 kg scale. Blends of 1:1 microcrystalline cellulose/lactose or 1:1 microcrystalline cellulose/dicalcium phosphate anhydrous with active pharmaceutical ingredient (API) at loadings of 0.2, 1 and 5% were processed either by DC or RC.

View Article and Find Full Text PDF

Active pharmaceutical ingredients (API) can undergo an anhydrate to hydrate transformation during wet granulation and this transformation may either result in mixed crystalline forms or an unwanted form in the final drug product. Previous studies have shown that it may be possible to inhibit this transformation with polymeric excipients. In this study, three model compounds, caffeine (CAF), carbamazepine (CBZ), and sulfaguanidine (SGN), were subjected to high shear wet granulation and phase transformations were monitored using in-line Raman spectroscopy.

View Article and Find Full Text PDF

Crystalline anhydrous active pharmaceutical ingredients (APIs) can potentially transform to the hydrate form during manufacturing processes involving water. The ability to understand and manipulate these transformations is important to maintain control of the solid state form of the API. The influence of various polymeric excipients on the anhydrate to hydrate transformation of caffeine, carbamazepine, and sulfaguanidine was investigated in this study.

View Article and Find Full Text PDF

The objective of this study was to use diffuse reflectance near infrared spectroscopy (NIRS) to determine racemic compound content in physical mixtures composed primarily of the enantiomorph and to assess the error, instrument reproducibility and limits of detection (LOD) and quantification (LOQ) of the method. Physical mixtures ranging from 0 to 25% (+/-)-tartaric acid in (+)-tartaric acid were prepared and spectra of the powder samples contained in glass vials were obtained using a Foss NIRSystems Model 5000 monochrometer equipped with a Rapid Content Analyzer scanning from 1100 to 2500 nm. A calibration curve was constructed by plotting (+/-)-tartaric acid weight percent against the 2(nd) derivative values of log (1/R) vs lambda at a single wavelength, normalized with a denominator wavelength (1480 nm/1280 nm).

View Article and Find Full Text PDF

(+-)-Tartaric acid, C(4)H(6)O(6), crystallized from ethanol in space group P 1 macro. The structure is characterized by five hydrogen bonds, including the formation of a centrosymmetric carboxylic acid dimer which forms infinite chains along the body diagonal. These chains form sheets via hydrogen bonding between alpha-hydroxyl groups.

View Article and Find Full Text PDF