Publications by authors named "Paul E Berry"

The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region.

View Article and Find Full Text PDF

Woody perennial plants on islands have repeatedly evolved from herbaceous mainland ancestors. Although the majority of species in subgenus section (Euphorbiaceae) are small and herbaceous, a clade of 16 woody species diversified on the Hawaiian Islands. They are found in a broad range of habitats, including the only known C plants adapted to wet forest understories.

View Article and Find Full Text PDF

All published names of from Madagascar, the Comoros, and the Mascarenes are treated here. We indicate which names are currently accepted (123 native species and 1 introduced), which ones we consider to be heterotypic synonyms (188), which ones are doubtful (25), and which ones should be excluded (5). We newly designate lectotypes for 108 names, and epitypes for Baill.

View Article and Find Full Text PDF

The cataloging of the vascular plants of the Americas has a centuries-long history, but it is only in recent decades that an overview of the entire flora has become possible. We present an integrated assessment of all known native species of vascular plants in the Americas. Twelve regional and national checklists, prepared over the past 25 years and including two large ongoing flora projects, were merged into a single list.

View Article and Find Full Text PDF

Background And Aims: Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits.

Methods: Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date.

View Article and Find Full Text PDF

The mid-Cenozoic decline of atmospheric CO2 levels that promoted global climate change was critical to shaping contemporary arid ecosystems. Within angiosperms, two CO2 -concentrating mechanisms (CCMs)-crassulacean acid metabolism (CAM) and C4 -evolved from the C3 photosynthetic pathway, enabling more efficient whole-plant function in such environments. Many angiosperm clades with CCMs are thought to have diversified rapidly due to Miocene aridification, but links between this climate change, CCM evolution, and increased net diversification rates (r) remain to be further understood.

View Article and Find Full Text PDF

We present an integrative model predicting associations among epiphytism, the tank habit, entangling seeds, C₃ vs. CAM photosynthesis, avian pollinators, life in fertile, moist montane habitats, and net rates of species diversification in the monocot family Bromeliaceae. We test these predictions by relating evolutionary shifts in form, physiology, and ecology to time and ancestral distributions, quantifying patterns of correlated and contingent evolution among pairs of traits and analyzing the apparent impact of individual traits on rates of net species diversification and geographic expansion beyond the ancestral Guayana Shield.

View Article and Find Full Text PDF

Euphorbia is among the largest genera of angiosperms, with about 2000 species that are renowned for their remarkably diverse growth forms. To clarify phylogenetic relationships in the genus, we used maximum likelihood, bayesian, and parsimony analyses of DNA sequence data from 10 markers representing all three plant genomes, averaging more than 16kbp for each accession. Taxon sampling included 176 representatives from Euphorbioideae (including 161 of Euphorbia).

View Article and Find Full Text PDF

Premise Of The Study: The Chamaesyce clade of Euphorbia is the largest lineage of C(4) plants among the eudicots, with 350 species including both narrow endemics and cosmopolitan weeds. We sampled this group worldwide to address questions about subclade relationships, the origin of C(4) photosynthesis, the evolution of weeds, and the role of hybridization and long-distance dispersal in the diversification of the group. •

Methods: Two nuclear (ITS and exon 9 of EMB2765) and three chloroplast markers (matK, rpl16, and trnL-F) were sequenced for 138 ingroup and six outgroup species.

View Article and Find Full Text PDF

Premise: Bromeliaceae form a large, ecologically diverse family of angiosperms native to the New World. We use a bromeliad phylogeny based on eight plastid regions to analyze relationships within the family, test a new, eight-subfamily classification, infer the chronology of bromeliad evolution and invasion of different regions, and provide the basis for future analyses of trait evolution and rates of diversification.

Methods: We employed maximum-parsimony, maximum-likelihood, and Bayesian approaches to analyze 9341 aligned bases for four outgroups and 90 bromeliad species representing 46 of 58 described genera.

View Article and Find Full Text PDF

Phylogenetic relationships of Croton section Cleodora (Klotzsch) Baill. were evaluated using the nuclear ribosomal ITS and the chloroplast trnL-F and trnH-psbA regions. Our results show a strongly supported clade containing most previously recognized section Cleodora species, plus some other species morphologically similar to them.

View Article and Find Full Text PDF

The study of traits that play a key role in promoting diversification is central to evolutionary biology. Floral nectar spurs are among the few plant traits that correlate with an enhanced rate of diversification, supporting the claim that they are key innovations. Slight changes in spur morphology could confer some degree of premating isolation, explaining why clades with spurs tend to include more species than their spurless close relatives.

View Article and Find Full Text PDF

Circaea (Onagraceae) consists of eight species and six subspecies distributed in Eurasia and North America. The sister group of Circaea was recently shown to be Fuchsia, which comprises 107 species primarily distributed in montane Central and South America, including four species occurring in the South Pacific islands. Three plastid markers (petB-petD, rpl16, and trnL-F) and nrITS sequences from 13 of the 14 taxa of Circaea were sequenced and used to reconstruct the phylogenetic and biogeographic history of the genus.

View Article and Find Full Text PDF

Croton alabamensis (Euphorbiaceae s.s.) is a rare plant species known from several populations in Texas and Alabama that have been assigned to var.

View Article and Find Full Text PDF

Parsimony, likelihood, and Bayesian analyses of nuclear ITS and plastid trnL-F DNA sequence data are presented for the giant genus Croton (Euphorbiaceae s.s.) and related taxa.

View Article and Find Full Text PDF

To examine relationships and test previous sectional delimitations within Fuchsia, this study used parsimony and maximum likelihood analyses with nuclear ITS and chloroplast trnL-F and rpl16 sequence data for 37 taxa representing all sections of Fuchsia and four outgroup taxa. Results support previous sectional delimitations, except for F. verrucosa, which is related to a Central American clade rather than to section Fuchsia and is described here as a new section Verrucosa.

View Article and Find Full Text PDF