Publications by authors named "Paul Duffield Brewer"

Pathways linking activation of the insulin receptor to downstream targets of insulin have traditionally been studied using a candidate gene approach. To elucidate additional pathways regulating insulin activity, we performed a forward chemical-genetics screen based on translocation of a glucose transporter 4 (Glut4) reporter expressed in murine 3T3-L1 adipocytes. To identify compounds with known targets, we screened drug-repurposing and natural product libraries.

View Article and Find Full Text PDF

Insulin increases glucose uptake by increasing the rate of exocytosis of the facilitative glucose transporter isoform 4 (Glut4) relative to its endocytosis. Insulin also releases Glut4 from highly insulin-regulated secretory compartments (GSVs or Glut4 storage vesicles) into constitutively cycling endosomes. Previously it was shown that both overexpression and knockdown of the small GTP-binding protein Rab14 decreased Glut4 translocation to the plasma membrane (PM).

View Article and Find Full Text PDF

The RabGAP AS160/TBC1D4 controls exocytosis of the insulin-sensitive glucose transporter Glut4 in adipocytes. Glut4 is internalized and recycled through a highly regulated secretory pathway in these cells. Glut4 also cycles through a slow constitutive endosomal pathway distinct from the fast transferrin (Tf) receptor recycling pathway.

View Article and Find Full Text PDF

The trafficking kinetics of Glut4, the transferrin (Tf) receptor, and LRP1 were quantified in adipocytes and undifferentiated fibroblasts. Six steps were identified that determine steady state cell surface Glut4: (i) endocytosis, (ii) degradation, (iii) sorting, (iv) sequestration, (v) release, and (vi) tethering/docking/fusion. Endocytosis of Glut4 is 3 times slower than the Tf receptor in fibroblasts (ken = 0.

View Article and Find Full Text PDF

The Akt substrate AS160 (TCB1D4) regulates Glut4 exocytosis; shRNA knockdown of AS160 increases surface Glut4 in basal adipocytes. AS160 knockdown is only partially insulin-mimetic; insulin further stimulates Glut4 translocation in these cells. Insulin regulates translocation as follows: 1) by releasing Glut4 from retention in a slowly cycling/noncycling storage pool, increasing the actively cycling Glut4 pool, and 2) by increasing the intrinsic rate constant for exocytosis of the actively cycling pool (k(ex)).

View Article and Find Full Text PDF

Insulin regulates glucose uptake through effects on the trafficking of the glucose transporter Glut4. To investigate the degree of overlap between Glut4 and the general endocytic pathways, the kinetics of trafficking of Glut4 and the receptors for transferrin (Tf) and α(2)-macroglobulin (α-2-M; LRP-1) were compared using quantitative flow cytometric assays. Insulin increased the exocytic rate constant (k(ex)) for both Glut4 and Tf.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Paul Duffield Brewer"

  • Paul Duffield Brewer's research primarily focuses on the molecular mechanisms regulating the translocation and secretion of the insulin-sensitive glucose transporter Glut4 in adipocytes, emphasizing the pathways and proteins involved in this critical process.
  • His findings show that the regulation of Glut4 involves complex trafficking mechanisms, including the identification of distinct endocytic and recycling pathways, as well as the roles of various proteins like Rab GTPases and AS160 in modulating Glut4 activity and insulin response.
  • Recent studies utilize high-throughput chemical-genetics screens to explore additional insulin-regulatory pathways, aiming to identify compounds influencing Glut4 translocation and thereby contribute to better understanding of insulin signaling and glucose homeostasis.