tRNA-derived stress-induced RNAs (tiRNAs) are a new class of small non-coding RNA that have emerged as important regulators of cellular stress responses. tiRNAs are derived from specific tRNA cleavage by the stress-induced ribonuclease angiogenin (ANG). Loss-of-function mutations in the ANG gene are linked to amyotrophic lateral sclerosis (ALS), and elevated levels of specific tiRNAs were recently identified in ALS patient serum samples.
View Article and Find Full Text PDFMotivation: tRNAs were originally considered uni-functional RNA molecules involved in the delivery of amino acids to growing peptide chains on the ribosome. More recently, the liberation of tRNA fragments from tRNAs via specific enzyme cleavage has been characterized. Detection of tRNA fragments in sequencing data is difficult due to tRNA sequence redundancy and the short length of both tRNAs and their fragments.
View Article and Find Full Text PDFBackground And Purpose: Stroke is the second leading cause of death and disability worldwide and its diagnosis, and assessment of prognosis, remains challenging. There is a need for improved diagnostic and prognostic biomarkers. MicroRNAs (miRNAs) play important roles in the post-transcriptional regulation of gene expression and their secretion and remarkable stability in biofluids highlights their potential as sensitive biomarkers in the diagnosis and prognosis of acute stroke.
View Article and Find Full Text PDFB-cell lymphoma 2 (BCL-2) has recently emerged as a therapeutic target for early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL), a high-risk subtype of human T-cell ALL. The major clinical challenge with targeted therapeutics, such as the BCL-2 inhibitor ABT-199, is the development of acquired resistance. We assessed the in vivo response of luciferase-positive LOUCY cells to ABT-199 monotherapy and observed specific residual disease in the splenic microenvironment.
View Article and Find Full Text PDFCentromeres pose an evolutionary paradox: strongly conserved in function but rapidly changing in sequence and structure. However, in the absence of damage, centromere locations are usually conserved within a species. We report here that isolates of the pathogenic yeast species show within-species polymorphism for the location of centromeres on two of its eight chromosomes.
View Article and Find Full Text PDFGestational Diabetes Mellitus (GDM) is characterised by insulin resistance accompanied by reduced beta-cell compensation to increased insulin demand, typically observed in the second and third trimester and associated with adverse pregnancy outcomes. There is a need for a biomarker that can accurately monitor status and predict outcome in GDM, reducing foetal-maternal morbidity and mortality risks. To this end, circulating microRNAs (miRNAs) present themselves as promising candidates, stably expressed in serum and known to play crucial roles in regulation of glucose metabolism.
View Article and Find Full Text PDFThe unfolded protein response (UPR) in the endoplasmic reticulum (ER) is well conserved in eukaryotes from metazoa to yeast. The transcription factor is a major regulator of the UPR in many eukaryotes. Deleting in the yeast rendered cells more sensitive to DTT, a known inducer of the UPR.
View Article and Find Full Text PDFRiboswitches are non-coding RNA molecules that regulate gene expression by binding to specific ligands. They are primarily found in bacteria. However, one riboswitch type, the thiamin pyrophosphate (TPP) riboswitch, has also been described in some plants, marine protists and fungi.
View Article and Find Full Text PDFMetagenomics uses nucleic acid sequencing to characterize species diversity in different niches such as environmental biomes or the human microbiome. Most studies have used 16S rRNA amplicon sequencing to identify bacteria. However, the decreasing cost of sequencing has resulted in a gradual shift away from amplicon analyses and towards shotgun metagenomic sequencing.
View Article and Find Full Text PDFScaled acoustic laboratory experiments are used to develop a methodology for obtaining the acoustic characteristics of different barrier top designs and for identifying geometries that may have advantages over the traditional thin vertical screen. The idea is to use a short impulsive spherical sound pulse possessing a broad frequency spectrum. If the duration of the pulse is sufficiently short, the entire primary signal, which travels by the shortest direct route diffracting at the top of the barrier, arrives at the receiver much earlier than any secondary signals reflected from the surroundings.
View Article and Find Full Text PDFThe Candida CTG clade is a monophyletic group of fungal species that translates CTG as serine, and includes the pathogens Candida albicans and Candida parapsilosis. Research has typically focused on identifying protein-coding genes in these species. Here, we use bioinformatic and experimental approaches to annotate known classes of non-coding RNAs in three CTG-clade species, Candida parapsilosis, Candida orthopsilosis and Lodderomyces elongisporus.
View Article and Find Full Text PDFN-ethyl-N-nitrosourea (ENU) and N-methyl-N-nitrosourea (MNU) are well-known direct-acting transplacental mutagens and carcinogens. Methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) are also direct-acting but more stable compounds and form a different proportion of the various methyl and ethyl DNA adducts. The transplacental mutagenicity and carcinogenicity of MMS and EMS have not been well characterized.
View Article and Find Full Text PDFUrethane and N-nitrosodiethylamine are soluble environmental carcinogens that initiate tumors transplacentally, but have a mixed history of effectiveness in mutagenesis assays in vitro or in vivo with adult rodents. To test for their transplacental mutagenicity, Syrian hamster fetuses at 12 days in gestation were exposed transplacentally to urethane or N-nitrosodiethylamine at 0.5 or 1.
View Article and Find Full Text PDFBirth Defects Res B Dev Reprod Toxicol
October 2006
Background: The consequences of mutations in embryonic and fetal cells are serious and contribute to high prenatal sensitivity to mutagenic agents. An understanding of the factors that influence the yield of such mutations is important for management of adverse effects of perinatal exposures. Resistance to 6-thioguanine (6-TG) can be utilized to study mutational events at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus.
View Article and Find Full Text PDFThe transplacental mutagenicity of three polycylic aromatic hydrocarbons, 7,12-dimethylbenz[a]anthacene (DMBA), 3-methylcholanthrene (MC) and benzo[a]pyrene (BP), was measured by an in vivo/in vitro mutation assay. Fetal sensitivity and dose-response characteristics with regard to transplacental mutagenesis by these compounds have never been quantified. In the current experiment, pregnant Syrian hamsters were exposed to these compounds at day 12 of gestation.
View Article and Find Full Text PDFTeratog Carcinog Mutagen
December 2002
In a previous study, treatment of rats with 10% glucose in the drinking water, as fetuses during gestation and for 1.5 months after delivery, significantly enhanced tumor incidence that resulted from N-methyl-N-nitrosourea (MNU, 20 mg/kg) given transplacentally on gestation day 21, with a 1.6-fold increase in overall tumor incidence.
View Article and Find Full Text PDFTransabdominal X-rays are a risk factor for childhood leukemia, and X-ray exposure of mouse fetuses has led to increases in both mutations and initiated tumors in offspring. However, fetal sensitivity and dose-response characteristics with regard to transplacental mutagenesis by X-rays have never been quantified. In the current experiment, pregnant Syrian hamsters at day 12 of gestation were irradiated with 300-kV X-rays.
View Article and Find Full Text PDF