Publications by authors named "Paul De-Jesus"

Defining the subset of cellular factors governing SARS-CoV-2 replication can provide critical insights into viral pathogenesis and identify targets for host-directed antiviral therapies. While a number of genetic screens have previously reported SARS-CoV-2 host dependency factors, these approaches relied on utilizing pooled genome-scale CRISPR libraries, which are biased towards the discovery of host proteins impacting early stages of viral replication. To identify host factors involved throughout the SARS-CoV-2 infectious cycle, we conducted an arrayed genome-scale siRNA screen.

View Article and Find Full Text PDF

The translation initiation complex 4F (eIF4F) is a rate-limiting factor in protein synthesis. Alterations in eIF4F activity are linked to several diseases, including cancer and infectious diseases. To this end, coronaviruses require eIF4F complex activity to produce proteins essential for their life cycle.

View Article and Find Full Text PDF
Article Synopsis
  • * Apra S4 effectively prevents the replication of several viruses, including SARS-CoV-2 and influenza A, demonstrating significant antiviral effects in human cells at very low concentrations.
  • * The drug works by disrupting key processes in the viral life cycle, including the creation of structures necessary for viral replication and the production of essential viral proteins, making further research on Sec61 inhibitors promising for antiviral therapy.
View Article and Find Full Text PDF

The HIV-1 accessory protein Vpu modulates membrane protein trafficking and degradation to provide evasion of immune surveillance. Targets of Vpu include CD4, HLAs, and BST-2. Several cellular pathways co-opted by Vpu have been identified, but the picture of Vpu's itinerary and activities within membrane systems remains incomplete.

View Article and Find Full Text PDF
Article Synopsis
  • The fate of influenza A virus (IAV) in host cells is determined by the interplay between the cell's defense systems and the virus's strategies to evade those defenses.
  • A comprehensive analysis combining genetic screens, transcriptomics, and proteomics identified key cell mechanisms, particularly the role of autophagy regulator TBC1D5, in inhibiting IAV replication.
  • The IAV M2 protein impedes TBC1D5's function by disrupting its interaction with Rab7, allowing the virus to avoid degradation and continue its replication and spread.
View Article and Find Full Text PDF

Zika virus (ZIKV) is a mosquito-borne pathogen classified by the World Health Organization (WHO) as a public health emergency of international concern in 2016, and it is still identified as a priority disease. Although most infected individuals are asymptomatic or show mild symptoms, a risk of neurologic complications is associated with infection in adults. Additionally, infection during pregnancy is directly linked to microcephaly and other congenital malformations.

View Article and Find Full Text PDF

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress.

View Article and Find Full Text PDF

Recent studies have profiled the innate immune signatures in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and suggest that cellular responses to viral challenge may affect disease severity. Yet the molecular events that underlie cellular recognition and response to SARS-CoV-2 infection remain to be elucidated. Here, we find that SARS-CoV-2 replication induces a delayed interferon (IFN) response in lung epithelial cells.

View Article and Find Full Text PDF

A deficient interferon response to SARS-CoV-2 infection has been implicated as a determinant of severe COVID-19. To identify the molecular effectors that govern interferon control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human interferon stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors that inhibited viral entry, nucleic acid binding proteins that suppressed viral RNA synthesis, and a highly enriched cluster of ER and Golgi-resident ISGs that inhibited viral translation and egress.

View Article and Find Full Text PDF
Article Synopsis
  • The COVID-19 pandemic, caused by the SARS-CoV-2 virus, emerged in 2019, and while developing a vaccine typically takes 12-18 months, finding immediate treatments is critical.
  • Researchers screened about 12,000 existing FDA-approved drugs to find 100 molecules that can inhibit the replication of SARS-CoV-2, with 21 showing promising dose-response effects.
  • Among the identified drugs, 13 have effective concentrations that could be used safely in patients, including notable candidates like apilimod and MDL-28170, which also showed effectiveness in lab models simulating human lung cells.
View Article and Find Full Text PDF

The emergence of novel SARS coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of severe pneumonia-like disease designated as coronavirus disease 2019 (COVID-19). To date, more than 2.1 million confirmed cases and 139,500 deaths have been reported worldwide, and there are currently no medical countermeasures available to prevent or treat the disease.

View Article and Find Full Text PDF

Influenza A virus (IAV) is a human respiratory pathogen that causes yearly global epidemics, as well as sporadic pandemics due to human adaptation of pathogenic strains. Efficient replication of IAV in different species is, in part, dictated by its ability to exploit the genetic environment of the host cell. To investigate IAV tropism in human cells, we evaluated the replication of IAV strains in a diverse subset of epithelial cell lines.

View Article and Find Full Text PDF

Many viral pathogens target innate sensing cascades and/or cellular transcription factors to suppress antiviral immune responses. Here, we show that the accessory viral protein U (Vpu) of HIV-1 exerts broad immunosuppressive effects by inhibiting activation of the transcription factor NF-κB. Global transcriptional profiling of infected CD4 +T cells revealed that -deficient HIV-1 strains induce substantially stronger immune responses than the respective wild type viruses.

View Article and Find Full Text PDF

The nuclear factor kappa B (NF-κB) family of transcription factors plays a central role in coordinating the expression of genes that control inflammation, immune responses, cell proliferation, and a variety of other biological processes. In an attempt to identify novel regulators of this pathway, we performed whole-genome RNA interference (RNAi) screens in physiologically relevant human macrophages in response to lipopolysaccharide and tumor necrosis factor alpha (TNF-α). The top hit was SNW1, a splicing factor and transcriptional coactivator.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers investigated how HIV-1 accessory proteins, like Vpu, help the virus replicate by targeting specific cellular proteins for degradation.
  • A new high-throughput platform was developed to analyze the stability of over 400 interferon-stimulated genes and identify these cellular targets of Vpu.
  • The study revealed new Vpu targets, including E2 ligase UBE2L6 and transmembrane protein PLP2, which play roles in late-stage viral replication, providing insights into the virus's immune evasion tactics.
View Article and Find Full Text PDF

S119 was a top hit from an ultrahigh throughput screen performed to identify novel inhibitors of influenza virus replication. It showed a potent antiviral effect (50% inhibitory concentration, IC = 20 nM) and no detectable cytotoxicity (50% cytotoxic concentration, CC > 500 μM) to yield a selectivity index greater than 25 000. Upon investigation, we found that S119 selected for resistant viruses carrying mutations in the viral nucleoprotein (NP).

View Article and Find Full Text PDF

Retinoic acid-inducible gene I (RIG-I) receptor recognizes 5'-triphosphorylated RNA and triggers a signalling cascade that results in the induction of type-I interferon (IFN)-dependent responses. Its precise regulation represents a pivotal balance between antiviral defences and autoimmunity. To elucidate the cellular cofactors that regulate RIG-I signalling, we performed two global RNA interference analyses to identify both positive and negative regulatory nodes operating on the signalling pathway during virus infection.

View Article and Find Full Text PDF

Several systems-level datasets designed to dissect host-pathogen interactions during influenza A infection have been reported. However, apparent discordance among these data has hampered their full utility toward advancing mechanistic and therapeutic knowledge. To collectively reconcile these datasets, we performed a meta-analysis of data from eight published RNAi screens and integrated these data with three protein interaction datasets, including one generated within the context of this study.

View Article and Find Full Text PDF

Dendritic cells (DCs) play a critical role in the immune response to viral infection through the facilitation of cell-intrinsic antiviral activity and the activation of adaptive immunity. HIV-1 infection of DCs triggers an IRF3-dependent innate immune response, which requires the activity of cyclic GAMP synthase (cGAS). We report the results of a targeted RNAi screen utilizing primary human monocyte-derived DCs (MDDCs) to identify immune regulators that directly interface with HIV-1-encoded features to initiate this innate response.

View Article and Find Full Text PDF

An ultrahigh-throughput screen was performed to identify novel small molecule inhibitors of influenza virus replication. The screen employed a recombinant influenza A/WSN/33 virus expressing luciferase and yielded a hit rate of 0.5%, of which the vast majority showed little cytotoxicity at the inhibitory concentration.

View Article and Find Full Text PDF

Detection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-β production.

View Article and Find Full Text PDF

Innate immune sensors such as Toll-like receptors (TLRs) differentially utilize adaptor proteins and additional molecular mediators to ensure robust and precise immune responses to pathogen challenge. Through a gain-of-function genetic screen, we identified the gamma catalytic subunit of protein phosphatase 1 (PP1-γ) as a positive regulator of MyD88-dependent proinflammatory innate immune activation. PP1-γ physically interacts with the E3 ubiquitin ligase TRAF6, and enhances the activity of TRAF6 towards itself and substrates such as IKKγ, whereas enzymatically inactive PP1-γ represses these events.

View Article and Find Full Text PDF

Pathogens commonly utilize endocytic pathways to gain cellular access. The endosomal pattern recognition receptors TLR7 and TLR9 detect pathogen-encoded nucleic acids to initiate MyD88-dependent proinflammatory responses to microbial infection. Using genome-wide RNAi screening and integrative systems-based analysis, we identify 190 cofactors required for TLR7- and TLR9-directed signaling responses.

View Article and Find Full Text PDF